Fracton Phases of Matter

Based on (arXiv:2503.21660) has been published in JHEP

Mehdi Ahmadi-Jahmani Ferdowsi University of Mashhad

18 Sharivar, 1404

Overview

- 1. Introduction
- 2. Why Fractors?
- 3. Fractons in gauge field
- 4. Conclusion

• Fracton particles, also known as the fractonic phase of matter, represent a recent advancement in high-energy and condensed matter physics [Ahmadi-Jahmani and Parvizi, 2025]

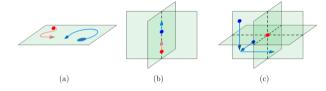
- Fracton particles, also known as the fractonic phase of matter, represent a recent advancement in high-energy and condensed matter physics [Ahmadi-Jahmani and Parvizi, 2025]
- Strong interactions among microscopic particles frequently lead to the emergence of quasiparticle excitations that exhibit properties markedly distinct from those of any established fundamental particle. [Pretko et al., 2020]

- Fracton particles, also known as the fractonic phase of matter, represent a recent advancement in high-energy and condensed matter physics [Ahmadi-Jahmani and Parvizi, 2025]
- Strong interactions among microscopic particles frequently lead to the emergence of quasiparticle excitations that exhibit properties markedly distinct from those of any established fundamental particle. [Pretko et al., 2020]
- Recently, a novel class of emergent quasiparticles has been identified, distinguished from all previously characterized particles by unique and unconventional properties.

- Fracton particles, also known as the fractonic phase of matter, represent a recent advancement in high-energy and condensed matter physics [Ahmadi-Jahmani and Parvizi, 2025]
- Strong interactions among microscopic particles frequently lead to the emergence of quasiparticle excitations that exhibit properties markedly distinct from those of any established fundamental particle. [Pretko et al., 2020]
- Recently, a novel class of emergent quasiparticles has been identified, distinguished from all previously characterized particles by unique and unconventional properties.

These quasiparticles are referred to as "fractons."

• Fractons are a type of quasiparticle characterized by their limited mobility or, in some cases, complete immobility. [Pretko et al., 2020, Nandkishore and Hermele, 2019]


- Fractons are a type of quasiparticle characterized by their limited mobility or, in some cases, complete immobility. [Pretko et al., 2020, Nandkishore and Hermele, 2019]
- A fracton, when isolated, cannot move in response to an applied force.[Pretko et al., 2020]

- Fractons are a type of quasiparticle characterized by their limited mobility or, in some cases, complete immobility. [Pretko et al., 2020, Nandkishore and Hermele, 2019]
- A fracton, when isolated, cannot move in response to an applied force.[Pretko et al., 2020]
- Immobility can be understood as a consequence of dipole moment conservation.

[Pretko et al., 2020]

- Fractons are a type of quasiparticle characterized by their limited mobility or, in some cases, complete immobility. [Pretko et al., 2020, Nandkishore and Hermele, 2019]
- A fracton, when isolated, cannot move in response to an applied force.[Pretko et al., 2020]
- Immobility can be understood as a consequence of dipole moment conservation.
 [Pretko et al., 2020]
- Fractons can occasionally move by forming specific bound states, such as dipoles.
 These mobile bound states typically exhibit mobility only in certain directions, giving rise to terms such as lineon and planon.[Pretko et al., 2020]

• Fractons appear in a diverse range of physical contexts, including:

• Fractons appear in a diverse range of physical contexts, including:

[Pretko et al., 2020, Nandkishore and Hermele, 2019]

1. Elasticity theory

• Fractons appear in a diverse range of physical contexts, including:

- 1. Elasticity theory
- 2. Applications in the context of quantum information storage

• Fractons appear in a diverse range of physical contexts, including:

- 1. Elasticity theory
- 2. Applications in the context of quantum information storage
- 3. Gravitational physics

• Fractons appear in a diverse range of physical contexts, including:

- 1. Elasticity theory
- 2. Applications in the context of quantum information storage
- 3. Gravitational physics
- 4. Holography

Fractons

 Fractons exhibit not only charge conservation, but also dipole moment conservation. [Pretko, 2017a, Pretko, 2017b]

Fracton conservation laws

$$\int \rho = \text{constant}, \quad \int \rho \vec{x} = \text{constant}, \tag{1}$$

 Fractons exhibit not only charge conservation, but also dipole moment conservation.[Pretko, 2017a, Pretko, 2017b]

Fracton conservation laws

$$\int \rho = \text{constant}, \quad \int \rho \vec{x} = \text{constant}, \tag{1}$$

• From a mathematical perspective, fractons emerge as intriguing phenomena that can be described by tensor gauge theories. [Pretko, 2017a, Pretko, 2017b]

Scalar charge theory:

Scalar charge theory:

$$\{\hat{Q}, \hat{Q}_{i}\} = \{\hat{Q}, \hat{P}_{i}\} = 0, \quad \{\hat{P}_{i}, \hat{Q}_{j}\} = \delta_{ij}\hat{Q},
\{\hat{P}_{i}, \hat{J}_{jk}\} = \delta_{ik}\hat{P}_{j} - \delta_{ij}\hat{P}_{k}, \quad \{\hat{Q}_{i}, \hat{J}_{jk}\} = \delta_{ik}\hat{Q}_{j} - \delta_{ij}\hat{Q}_{k},
\{\hat{J}_{ij}, \hat{J}_{kl}\} = \delta_{il}\hat{J}_{jk} - \delta_{ik}\hat{J}_{jl} + \delta_{jk}\hat{J}_{il} - \delta_{jl}\hat{J}_{ik},$$
(2)

Scalar charge theory:

$$\{\hat{Q}, \hat{Q}_{i}\} = \{\hat{Q}, \hat{P}_{i}\} = 0, \quad \{\hat{P}_{i}, \hat{Q}_{j}\} = \delta_{ij}\hat{Q},
\{\hat{P}_{i}, \hat{J}_{jk}\} = \delta_{ik}\hat{P}_{j} - \delta_{ij}\hat{P}_{k}, \quad \{\hat{Q}_{i}, \hat{J}_{jk}\} = \delta_{ik}\hat{Q}_{j} - \delta_{ij}\hat{Q}_{k},
\{\hat{J}_{ij}, \hat{J}_{kl}\} = \delta_{il}\hat{J}_{jk} - \delta_{ik}\hat{J}_{jl} + \delta_{jk}\hat{J}_{il} - \delta_{jl}\hat{J}_{ik},$$
(2)

Dipole Transformations

$$\delta_{\beta}x_i = 0, \quad \delta_{\beta}p_i = q\beta_i, \quad \delta_{\beta}E = 0, \quad \delta_{\beta}t = 0$$
 (3)

Isolated Fractons:

Isolated Fractons:

Isolated fractons

$$S_{\mathsf{Fracton}} = \int d\tau [-E\dot{t} + (\vec{p} - q\vec{\chi}) \cdot \dot{\vec{x}} - \frac{e}{2}(E^2 - \theta^2)], \tag{4}$$

The equations of motion for this type of particles are

$$\dot{t} = -eE, \quad \dot{\vec{x}} = 0, \quad \dot{\vec{p}} = q\dot{\vec{\chi}}$$
 (5)

• Static Dipole:

• Static Dipole:

• Static Dipole:

Static Dipole

$$S_{\text{Dipole}} = \int d\tau [-E\dot{t} + \vec{p} \cdot \dot{\vec{x}} - \frac{e}{2}(E^2 - \theta^2) + d^i \dot{t} \partial_i A_0(\vec{x}, t) - \dot{x}^i d^j A_{ij}(\vec{x}, t)].$$
 (6)

• Static Dipole:

Static Dipole

$$S_{\text{Dipole}} = \int d\tau [-E\dot{t} + \vec{p} \cdot \dot{\vec{x}} - \frac{e}{2}(E^2 - \theta^2) + d^i \dot{t} \partial_i A_0(\vec{x}, t) - \dot{x}^i d^j A_{ij}(\vec{x}, t)].$$
 (6)

Consequently, we can express the equations of motion as follows:

$$\dot{t} = -eE, \quad \dot{\vec{x}} = 0,
\dot{E} = -d^{i}\partial_{i}\dot{A}_{0} + d^{i}\dot{t}\partial_{t}\partial_{i}A_{0} - \dot{x}^{j}d^{i}\partial_{t}A_{ij} = 0,
\dot{p}_{m} = d^{j}\dot{A}_{mj} + d^{i}\dot{t}\partial_{i}\partial_{m}A_{0}(\vec{x}, t) - \dot{x}^{i}d^{j}\partial_{m}A_{ij}
= d^{j}\partial_{t}A_{mj} + d^{j}\partial_{j}\partial_{m}A_{0} = d^{j}E_{mj}.$$
(7)

Mobile Dipole:

- Mobile Dipole:
 - 1- The first mobile dipole:

The first mobile dipole

$$S_{\text{Dipole}} = \int d\tau [-E\dot{t} + \vec{p} \cdot \dot{\vec{x}} - \frac{e}{2}(p^2 - \epsilon^2) + \vec{\chi} \cdot (\vec{d} - \vec{\psi}) + d^i \dot{t} \partial_i A_0(\vec{x}, t) - \dot{x}^i d^j A_{ij}(\vec{x}, t)].$$
(8)

- Mobile Dipole:
 - 1- The first mobile dipole:

The first mobile dipole

$$S_{\text{Dipole}} = \int d\tau [-E\dot{t} + \vec{p} \cdot \dot{\vec{x}} - \frac{e}{2}(p^2 - \epsilon^2) + \vec{\chi} \cdot (\vec{d} - \vec{\psi}) + d^i \dot{t} \partial_i A_0(\vec{x}, t) - \dot{x}^i d^j A_{ij}(\vec{x}, t)]. \tag{8}$$

The resulting equations of motion are:

$$\dot{t} = 0, \quad \dot{\vec{x}} = e\vec{p},
\dot{E} = -2d^i \dot{x}^j E_{ij}, \quad \dot{p}_m = d^j \dot{x}^i (\partial_i A_{mj} - \partial_m A_{ij}) = d^j (\epsilon_{ijl} \dot{x}^i B_m^l).$$
(9)

2- The second mobile dipole:

Second mobile dipole

2- The second mobile dipole:

Second mobile dipole

$$S_{\text{Dipole}} = \int d\tau [-E\dot{t} + \vec{p} \cdot \dot{\vec{x}} - \frac{e}{2}(p^2 - \epsilon^2) - \frac{\tilde{e}}{2}(E^2 - \theta^2) + \vec{\chi} \cdot (\vec{d} - \vec{\psi}) + d^i \dot{t} \partial_i A_0(\vec{x}, t) - \dot{x}^i d^j A_{ij}(\vec{x}, t)].$$
(10)

2- The second mobile dipole:

Second mobile dipole

$$S_{\text{Dipole}} = \int d\tau [-E\dot{t} + \vec{p} \cdot \dot{\vec{x}} - \frac{e}{2}(p^2 - \epsilon^2) - \frac{\tilde{e}}{2}(E^2 - \theta^2) + \vec{\chi} \cdot (\vec{d} - \vec{\psi}) + d^i \dot{t} \partial_i A_0(\vec{x}, t) - \dot{x}^i d^j A_{ij}(\vec{x}, t)]. \tag{10}$$

The resulting equations of motion are:

$$\dot{t} = -\tilde{e}E, \quad \dot{\vec{x}} = e\vec{p}, \quad \dot{E} = -2d^i\dot{x}^j E_{ij},
\dot{p}_m = d^j [(\dot{t}\partial_t A_{mj} + \dot{x}^i \partial_i A_{mj}) + \dot{t}\partial_i \partial_m A_0(\vec{x}, t) - \dot{x}^i d^j \partial_m A_{ij}] = d^j (E_{mj} + \epsilon_{ijl}\dot{x}^i B_m^l).$$
(11)

• Our work explores the duality and relationship between Fractons and non-Lorentzian physics. Key findings include:

- Our work explores the duality and relationship between Fractons and non-Lorentzian physics. Key findings include:
 - 1. Fracton/Carroll duality

- Our work explores the duality and relationship between Fractons and non-Lorentzian physics. Key findings include:
 - 1. Fracton/Carroll duality
 - 2. Fracton/Galilean duality

- Our work explores the duality and relationship between Fractons and non-Lorentzian physics. Key findings include:
 - 1. Fracton/Carroll duality
 - 2. Fracton/Galilean duality
 - 3. Algebraic connections

- Our work explores the duality and relationship between Fractons and non-Lorentzian physics. Key findings include:
 - 1. Fracton/Carroll duality
 - 2. Fracton/Galilean duality
 - 3. Algebraic connections
 - 4. Geometric manifestations

• In this context, several research proposals have been put forward by us:

- In this context, several research proposals have been put forward by us:
 - 1. Fractons Quantum Theory: Tunneling, Entanglement,...

- In this context, several research proposals have been put forward by us:
 - 1. Fractons Quantum Theory: Tunneling, Entanglement,...
 - 2. Conformal construction of Fracton Gravity

- In this context, several research proposals have been put forward by us:
 - 1. Fractons Quantum Theory: Tunneling, Entanglement,...
 - 2. Conformal construction of Fracton Gravity
 - 3. Connections between Fracton Geometry and Non-Lorentzian geometry

- In this context, several research proposals have been put forward by us:
 - 1. Fractons Quantum Theory: Tunneling, Entanglement,...
 - 2. Conformal construction of Fracton Gravity
 - 3. Connections between Fracton Geometry and Non-Lorentzian geometry
 - 4. Anisotropic in Fracton Gravity

Thank You

References

Ahmadi-Jahmani, M. M. and Parvizi, A. (2025).

Fracton and non-Lorentzian particle duality: gauge field couplings and geometric implications. *JHEP*, 08:157.

Nandkishore, R. M. and Hermele, M. (2019).

Fractons.

Ann. Rev. Condensed Matter Phys., 10:295-313.

Pretko, M. (2017a).

Generalized Electromagnetism of Subdimensional Particles: A Spin Liquid Story. *Phys. Rev. B*, 96(3):035119.

Pretko, M. (2017b).

Subdimensional Particle Structure of Higher Rank U(1) Spin Liquids.

Phys. Rev. B, 95(11):115139.

Pretko, M., Chen, X., and You, Y. (2020).

Fracton Phases of Matter.

Int. J. Mod. Phys. A, 35(06):2030003.