
Generalized Liouville Action and
Orbifold Riemann Surfaces

Ali Naseh
Institute for Research in Fundamental Sciences - IPM

Advanced Topics in Quantum Gravity - FUM

Naseh (IPM) GLA and ORS 2025 1 / 32



Recently, the Orbifold Riemann surfaces (Riemann surfaces with
conical singularities and/or punctures) have seen renewed interest
from different points of view (I,II,III,IV,V,VI,...) in (Quantum)Gravity.
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(I) :
The entanglement structure of quantum theory seems has a
prominent role in the emergence of classical space-time:

The eternal BH with two asymptotic boundaries connected by ER
bridge ≡ TFD state that is an entangled state on two boundaries
[Maldacena,2001].
Ryu-Takayanagi (RT) formula relates the amount of entanglement
between the spatial sub-region with its complement in QFT state to
area of minimal surface in AdS anchored on the boundary of
sub-region [Ryu-Takayanagi,2006].
The (c)MERA ansatz for calculating ground state wavefunctions
gives the additional dimension for AdS spacetime [Swingle,2009].
The linearized Einstein equations can be derived from the
entanglement of the underlying quantum degrees of freedom
[Lashkari, McDermott, Van Raamsdonk,2013].

Bi-partite entanglement
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But, the degrees of freedom can be entangled in multi-partite
form. This is similar to this fact that the many-point correlation
functions can not be inferred from the lower correlations. For
example two states with tripartite entanglement are

|GHZ 〉 =
|000〉+ |111〉√

2
, |W 〉 =

|001〉+ |010〉+ |100〉√
3
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These states can be defined by integrating over half of a higher
genus surface .
For one of the cutting the surface in half, the obtained slice has
several components ≡ the state lives in three copies of a (Hilbert
space of) CFT. Actually, tripartite entanglement is the source of
the bulk connectedness.
For another one, the entanglement changes the global topology
and creates non-trivial genus behind the horizon.
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II:
Another motivation comes from the consideration of Rényi
entropies. When ρ is the reduces density matrix of some spatial
region A,

Sn =
1

1− n
log Tr (ρn) =

1
1− n

(log Zn − n log Z1)

It is generalization of von Neumann entropy (entanglement
entropy) S = −Tr (ρ log ρ) that can be obtained as the limit n→ 1.
The Rényi entropies for integer "n", can be calculated by a path
integral on a replicated surface with singular metric. This surface
which is formed by joining together "n"-copies of original system
across the region A, has genus g = (N − 1)(n − 1) (for N disjoint
entangling regions) which lives in a subspace of the moduli space
with a Zn symmetry.
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III:
In almost QM descriptions of BHs the geometric structure of the
(individual) quantum microstates is unclear:

In String theory, D-Brane (BPS) bound states describes the
microstates of special SUSY BH (five-dimensional extremal BH).
One can count the number of these states but one has not control
at finite coupling [Strominger and Vafa,1996].
In the AdS/CFT correspondence, the dual quantum states of BHs
are known, but one has not clear description for the interior of BHs
[Maldacena,1997].

In Cardy (like) approach, the symmetry analysis (near conformal
boundary and(or) near Horizon geometry), gives the symmetry
group algebra which by knowing its representation one can count
the number of quantum states. But again no clear description for
the interior of BHs.

Knowing the geometric structure of microstates not only allow us
to understand the origin of BH entropy but also the emergence of
the classical spacetime from coarse-graining of microstates.1

1The fuzzball (no event horizon) proposal [Mathur,2005] is an example.
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Let’s study the microstates of BH in 3D (EH theory). It seems
impossible in 3D since the theory does not contain any local
degrees of freedom. But do not forget the global degrees of
freedom associated with the topology of spacetimes that can be
quantized.

In the FRW coordinate ds2 = −dt2 + cos2(t)dΣ2, the microstate
geometries are defined by hyperbolic metric on a smooth surface
Σg of genus g ≥ 1. This surface has one hole (∂Σg = S1) and the
geometry of asymptotic boundary intersects with Σg along S1.

Σg(L)

Asy(L)

Σg = Σg(L) ∪ Asy(L)
L
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The surface Asy(L) is an annulus, with one infinite length
boundary matching onto the conformal boundary of AdS3 and one
geodesic boundary with length L. These information fix uniquely
the geometry of this surface: the moduli space (different
configuration space) seems trivial. But wait...

To define a theory on the asymptotically AdS3 spacetimes, one
must demand the proper boundary conditions (Brown and
Henneaux) on the asymptotic metric. The diffeomorphism
(diff (S1)) which act non-trivially on the conformal boundary
generates symmetries which their conserved charges (after
proper quantization) give two copies of Virasoro algebra.

The states that are obtained from this quantization are known as
boundary graviton since their appearance comes from presence
of a boundary (∼ edge states in quantum hall systems).

Therefore, the quantization of Σg(L) leads to a BH microstate (≡
primary state in the CFT2) which is dressed by boundary gravitons
(descendant states).
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Quantization of Σg(L):
A pair of pants is a sphere with three boundary geodesics (holes or
cuffs) that they determine uniquely the constant negative curvature
metric on the pair of pants.
Sewn the pair of pants together along their geodesic boundaries.
Accordingly, the metric on Σg(L) is determined by (3g − 3) + 1
complex parameters (internal geodesics length Li + internal twists
τi + length L).2 We call this space as the moduli spaceMg,1(L) (≡
space of classical solutions = Phase space).3

Its symplectic structure is (k = 1/16GN )

ω =
1

2π2

LdL ∧ dτ +
∑

j

LjdLj ∧ dτj

 =
1

4π
ωWP(Mg(L))

2Li , τi are known as Fenchel-Nielsen coordinates on moduli space. There is also a
twist parameter τ which describes how the black hole interior is matched onto
asymptotic infinity.

3To be more precise, the parameters (Li , τi ) parameterize the Teichmüller space
Tg,1(L) of bordered Riemann surfaces and (for chiral gravity)

Mg,1(L) = Tg,1,(L)/MCG(Σg(L)).
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By knowing the symplectic structure, one can quantize the phase
space by promoting the moduli space coordinates to operators
acting on the Hilbert space. For example, for the area L of the
event horizon ("Geomtric Quantization")

[L2
, τ ] = i

4π2

k
→ E =

1
4π2

kL2 ∈ Z.

At the semi-classical approximation, the number of genus g
microstates with energy E is just the volume ofMg,1(L). For ψ1
the curvature of line bundle overMg,1 associated to cotangent
bundle at puncture and κ1 the first tautological class
[ωWP ] = 2π2κ1, [Maloney,2015]

Ng(k,E) =
1

(3g − 2)!

∫
Mg,1

(
k

2π2
ωWP (Mg(L))

)3g−2

[Mirzakhani,2007]
=

1
(3g − 2)!

∫
Mg,1

(
k

2π2
ωWP (Mg,1) + Eψ1

)3g−2
,

[Witten,1991−Kontsevich,1992−Mirzakhani,2011]∼
3g−2∑
a=0

c(g,E, a)

∫
Mg,1

κ
3g−2−a
1 ψ

a
1︸ ︷︷ ︸

intersection numbers on moduli space

∼ E3g−2 � e4π
√

kE
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Apart the above mentioned problem, if one add the contribution of
all genus, the result will diverges. Therefore, to obtain the correct
number of microstates:

One might to study the full quantum Hilbert space via geometric
quantization.
It might be distinct geometries with different genus are related very
secretly together by some new type of gauge symmetry.
Pure gravity might not exist and one needs some extra matters
such as massive particles (≡ conical singularities)
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(IV ) :
If one uses only the smooth saddle-points in gravitational path
integral of 3D gravity, the obtained partition function suffers from
two problems:

The spectrum of twists at fixed spin is continuous [Maloney,
Witten,2010] rather than discrete. This problem potentially can be
resolved by noting to the very recent developments which state that
the dual theory to the 2D AdS gravity is an ensemble of
1-dimensional QMs, [Saad,Shenker,Stanford,2019].
Existence of negative degeneracy of states for large spins J and
energies E very close to the Edge of spectrum4 [Benjamin, Ooguri,
Shao, Wang, 2019]

ρJ (E) ∼ A0eS0(J)
√

E − |J|+ A1(−1)JeS0(J)/2 1√
E − |J|

The first term, come from the ordinary BTZ and the second term
which comes from the simplest class of SL(2,Z) black holes, is
exponentially suppressed by a relative factor of eS0(J)/2 but
enhanced very close to the edge.

4E = h + h̄ − c−1
12 , J = h̄ − h
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The minimal cure for the non-unitarity problem is provided by two
different groups and different ideas:

[Benjamin,Collier, Maloney,2020]:
One should include the additional states below the black hole
threshold which their geometric interpretation is that they are
conical defects with deficit angle δφ = 2π(1− 1/m) where m is a
positive integer.5 The matter loop runs round the horizon of BTZ
and gives extra contribution eamS0(J)(

√
E − |J|)−1/2, where for a

scalar of (local) mass "m", am = 1− 4mGN . For m ∼ 1/8GN , the
density grows fast enough to cure the negativity.

5The defects with deficit angle δΦ can be seen a massive particles with masses
m ∼ δφ/GN in AdS3.
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[Maxfield and Truiaci,2020]
proposed an alternative resolution which does not require a
modification of the theory, but rather the inclusion of additional
contributions to the path integral over metrics.

Actually, over spacetime topologies (Seifert manifolds) for which
no classical solution exists(≡ "off-shell" path integral)

ρJ (E) ∼ A0eS0(J)
√

E − |J|+ A1(−1)J eS0(J)/2 1√
E − |J|

+ A2(E − |J|)−3/2 + A3(−1)J e−S0(J)/2(E − |J|−5/2) + ...

∼ A0eS0(J)
√

E − E0(J)

where E0(J)− |J| ∼ −(−1)J e−S0(J)/2. This means that the non-unitary
problem is an artifact of truncating the binomial series.

The 2D compactified theory contains nonperturbative conical defects (JT
gravity with defects [Witten,2020]).
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Schottky Uniformization:
A marked Schottky group Σ of rank g is a relation-free system of
generators L1, . . . ,Lg ∈ PSL(2,C) that act properly on Ω.

If the fixed-points of Σ are encoded in limit set Λ then the region of
discontinuity is Ω = Ĉ\Λ.

For every marked Schottky group there is a fundamental domain
F for Σ in Ω which is a (connected) region in Ĉ bounded by 2g
disjoint Jordan curves C1, . . . ,Cg ,C′1, . . . ,C

′
g with C′i = −Li(Ci),

i = 1, . . . ,g. Each element Li can be represented in the normal
form

Li (w)− ai

Li (w)− bi
= λi

w − ai

w − bi
, w ∈ Ĉ,

where ai and bi and 0 < |λi | < 1 are the attracting, repelling fixed points
of the loxodromic element Li and multiplier, respectively.

The Schottky groups can be used to construct genus "g" surfaces, Ω/Σ.
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In the saddle-point approximation, the partition function on that
higher genus surface is related to the classical Liouville action
[Zograf and Takhtajan,1988 (was later interpreted by [Takhtajan
and Teo,2002] in cohomological language):

S[ϕ] =

∫∫
D

(|∂wϕ|2 + eϕ)d2w +

√
−1
2

g∑
k=2

∮
Ck

θL−1
k

(ϕ),

where the 1-form θL−1
k

(ϕ) is given by (∀Lk ∈ (G; L1, . . . ,Lg))

θL−1
k

(ϕ) =

(
ϕ− 1

2
log |L′k |2 − log |lk |2

)(
L′′k
L′k

dw −
L′′k
L′k

dw̄

)
,

and lk = 1−λk√
λk (ak−bk )

is the left-hand lower element in the matrix
representation of the generator Lk ∈ PSL(2,C) for k = 2, . . . ,g.
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V:
The above Schottky uniformisation picture can be extended to a
quotient of H3. The results of that are handlebody solution in a
Euclidean bulk, holographically dual to the field theory on the
Riemann surface.

Infinitely many Schottky uniformisations, different handlebodies,
characterised by the choice of boundary cycles which become
contractible in the bulk. The stable solution is determined by the
least action principle and it dominates in the calculation of the
partition function and therefore determines wavefunction of
gravitational system.

It plays an important role in the proof of Ryu-Takayanagi formula
and specially whether the the assumption of replica symmetry is
true or not in the dual gravitational system.6

6A preliminary results are provided by [Lewkowycz,Maldacena,2013] [Faulkner,
2013].
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(VI):
Apart from that important problems in Physics, studying orbifold
Riemann surfaces (+ punctures) might help to prove some
important conjectures or new theorems in Mathematics. Let us
remind couple of them.
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[Klein,1883] and [Poincaré,1884], consider the following
second-order linear differential equation on a Riemann surface X
with genus 0 and n-punctures (m→∞)

d2Y
dw2 +

1
2

QX (w)Y = 0, w ∈ X

where

QX (w) =
n−1∑
i=1

(
1

2(w − wi )2 +
ci

w − wi

)
.

For given cis (saccessory parameters), they could found analytic
continuation of the ratio Y1/Y2 of two linearly independent
solutions Y1 and Y2 along all non-contractible loops in X which
leads to a monodromy representation Mon : π1(X )→ PSL(2,C).
Its image in PSL(2,C) is called the monodromy group Γ (with
parabolic generators P1...Pn = 1). They called it "uniformization
theorem":

X ∼= H/Γ Y1/Y2 = J−1 : X → H
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Since the time of Klein and Poincare, cis were considered to be
"mysterious" object. Not only one could not compute them
explicitly but also prove that they exist and are single-valued
functions of the punctures.

But Physics (Quantum Liouville Theorem and its Conformal Ward
Identities) can give some important information about them even
the ones that Klein and Poincare were not aware of them!
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It is well-known that the response of a CFT to the Weyl
transformation is encoded in classical Liouville action.

Accordingly, the quantized Liouville theorem can describe the
quantum corrections to those (hyperbolic) geometries.

This provide one way to 2D quantum gravity via the quantum
Liouville theorem by demanding that quantum Liouville theorem
takes the advantage of conformal symmetry as its classical
cousin.

If the conformal symmetry is also the symmetry of quantum
Liouville theorem, it must show itself in the conformal Ward
identities (CWIs) for correlation functions of components of
energy-momentum tensor with another operators.
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For Xm = Vm1 (w1) · · ·Vmn (wn) that Vmi are some vertex operators
Vmi = eα(mi )ψ/~ (mi →∞), the quantum Liouville theorem is defined by

〈Xm〉 =

∫
CMm(X)

Dψ e−
1

2π~ Sm[ψ],

where the Sm is the quantum Liouville action in presence of some
punctures. Moreover,

〈T (w)Xm〉 =

∫
CMm(X)

Dψ T (ψ)(w) e−
1

2π~ Sm[ψ].

To have conformal symmetry, one actually requires to prove that

1
~
〈T (w)Xm〉 =

n∑
i=1

(
hmi (~)

(w − wi )2 +
1

(w − wi )
∂wi

)
〈Xm〉, (1)

with hmi (~) are considered as conformal dimensions of those vertex
operators.
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Note that at the tree level when ~→ 0,

〈Xm〉 ∼ e−
1

2π~ Sm[ϕ], hmi (~) ∼ hcl(mi )

2~
〈T (w)Xm〉 ∼ Tϕ(w) e−

1
2π~ Sm[ϕ].

By substituting the above relations in (1), one gets

1
~

Tϕ(w) e−
1

2π~ Sm[ϕ] =
n∑

i=1

(
hcl(mi )

2~(w − wi )2 +
1

(w − wi )
∂wi

)
e−

1
2π~ Sm[ϕ],

which implies that

Tϕ(w) =
n∑

i=1

(
hcl(mi )

2(w − wi )2 −
1

2π
1

(w − wi )
∂wi Sm[ϕ]

)
.

Using the expression of EMT of classical Liouville action,Tϕ(w), gives

hcl(mi ) = 1− 1
m2

i
(= 1,puncture), ∂wi Sm[ϕ] = −2πci ,

The classical Liouville action is the generating function of the cis! Very
interestingly, it was conjectured by [Polyakov,1982]!!
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Moreover, the conformal symmetry at the quantum level implies that the
vertex operators and components of the energy-momentum tensor
satisfy the OPE of BPZ7, for example

1
~2 T (w)T (w̄ ′) = ... (regular terms)

which yields the following CWIs,

1
~2 〈T (w)T (w̄ ′)Xm〉 =

1
~

n∑
i=1

(
hmi (~)

(w − wi )2 +
1

(w − wi )
∂wi

)
〈T (w̄ ′)Xm〉.

For the 〈T (w)T (w̄ ′)Xm〉nc, the similar tree level analysis ~→ 0, gives
[Takhtajan,1994]

∂2Sm[ϕ]

∂wi∂wj
= (WP metric)ij → ∂ci

∂wj
=
∂cj

∂wi

where Neither Klein nor Poincare were aware of these results! and
[Polyakov and Zamolodchikov,1982-1984] just had a conjecture for it!!

7Belavin-Polyakon-Zamolodchikov
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In collaboration with Kuroush Allameh (USC), Behrad Taghavi
(IPM) and by using the modern language of uniformization we
studied the orbifold Riemann surfaces with non-trivial genus and
found the proper generalized Liouville action (2310.17536):

Sm = Sm − π
n∑

i=1

(mi − 1
mi

) log hi ,

hi =



∣∣∣J(i)
1

∣∣∣ 2
mi i = 1, . . . ,ne,∣∣∣J(i)

1

∣∣∣2 i = ne + 1, . . . ,n − 1,∣∣∣J(n)
−1

∣∣∣2 i = n.

Intuition: Generalized Liouville action Sm should be independent
from the choice of a fundamental domain.
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The modern quantum geometry of strings primarily explores all
surfaces, analyzing variations in their metrics and the
determinants of the corresponding Laplacians.

A key area of interest is how this determinant, viewed as a function
of the metric on a given compact surface, behaves, particularly in
identifying its extreme values under specific metric constraints.

This topic is extensively examined in the seminal work by Osgood,
Phillips, and Sarnak [1988]. They investigated the function
− log det ∆ as a height function on the space of metrics for a
compact, orientable, smooth surface of genus g.

They discovered that for surfaces with g > 1, this function reaches
its minimum at the unique (up to scaling, and treating isometric
surfaces as equivalent) hyperbolic metric within any given
conformal class of metrics and has no other critical points.
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Their result can be viewed as new perspective on the classical
uniformization theorem:

The uniformization theorem states that every simply connected
Riemann surface can be conformally mapped to one of three
canonical geometries: the sphere (positive curvature), the
Euclidean plane (zero curvature), or the hyperbolic plane
(negative curvature).

For surfaces of genus greater than 1, the uniformization theorem
implies that the surface admits a unique hyperbolic metric within
its conformal class.
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On the other hand, the Liouville action offers a variational principle
where the critical point correspond to constant curvature metrics
(such as hyperbolic metrics for surfaces with genus g > 1 which
appears also from uniformization theorem).

All of this indicates a profound connection between the spectrum
of − log det ∆ (and thus the Polyakov anomaly) and the Liouville
action, identified by Takhtajan and Teo [2003] for compact
Riemann surfaces.

In collaboration with Hossein Mohammadi (SUT) and Behrad
Taghavi (IPM), we demonstrate that this relationship can be
extended to orbifold Riemann surfaces via our generalized
Liouville action Sm.
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According to Kalvin [2019] or Aldana, Kirsten and Rowlett [2020],
for the metric g̃ = eσg, the Polyakov anomaly formula is given by

log
det(∆g̃)

Ag̃
− log

det(∆g)

Ag

= − 1
12π

∫∫
Dδ

(
∂zσ∂z̄σ − K [ϕ]eϕσ

)
d2z + π

ne∑
j=1

mjhjσ(zj)

 .

The changes of our action (without area term) under conformal
transformation

Sm[ϕ+σ]−Sm[ϕ] =

∫∫
Dδ

(
∂zσ∂z̄σ+K [ϕ] eϕσ

)
d2z+π

ne∑
j=1

mjhj σ(zj).
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The method we employed to find this extension offers an
alternative approach for deriving the renormalized Polyakov
anomaly for Riemann surfaces with punctures (cusps).

Assuming that relation remains valid even in the presence of
punctures, we find that8(

P[ϕ+σ]−P[ϕ]
)

ren
=
(

P[ϕ+σ]−P[ϕ]
)
−1

6
lim
ε→0

n∑
j=ne+1

(
1− e−σ(zj )/2

)
log ε

which leads to:(
P[ϕ+ σ]− P[ϕ]

)
ren

= − 1
12π

(∫∫
f
Dδ

(
∂zσ∂z̄σ − K [ϕ]eϕσ

)
d2z

)
.

Unlike conical singularities, where additional finite terms appear in
the Polyakov anomaly compared to the compact case, punctures
(cusps) do not introduce any new finite terms, Albin, Aldana, and
Rochon [2013].

8Where P[ϕ] = log
det(∆g )

Ag
and ε = |z − zj |.
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Let define the bulk renormalized volume as follows

Vren= lim
ε→0

(
Vε[ϕ]− 1

2
Aε[ϕ]−πχ(X ) log ε

− π

2

ne∑
j=1

(1− 1
mj

)2 log ε− π
2

np(log ε+ 2 log |log ε|)
)
,

Then, using the technology of double (co)homology complexes (
(co)homology group and group (co)homology) we obtain

Vren = −1
4

(
Sm[ϕ]− area term

)
.

The renormalized hyperbolic volume Vren coincides with the
generalized Liouville action Sm.
The renormalized hyperbolic volume Vren is inherently connected
to the boundary’s uniformization theory and follows a
Polyakov-type anomaly formula.
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