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Classical Chaos

m In the Chaotic system trajectories in phase space show
extreme sensitivity to initial conditions

m Nearby trajectories separate exponentially fast which
Characterized by the Lyapunov exponent

m In a chaotic system, if the initial condition changes as
Y(0) — Y(0) + 0 Y(0), the system’s trajectory at any later
time changes as Y(t) — Y(t) + 0 Y(¢), such that

() =

where ) is the Lyapunov exponent.

m For a integrable system with N degrees of freedom, there is
N conserved quantities

4/33



Double pendulum
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Quantum Chaos

Applying concepts of classical chaos to quantum chaos
involves several challenges
m Quantum systems are governed by probabilistic laws and
described by wavefunctions
® Quantum mechanics does not have well-defined trajectories
due to the uncertainty principle
m Quantum coherence and superposition effects have no direct
analogs in classical mechanics
Two of the most widely used methods are out-of-time-order
correlators (OTOCs) and spectral statistics
For two observables W(t) and V(0) in the infinite
temperature OTOC is defined

OTOC(f) = —%Zm[wu), V(0)]?)

Exponential growth over time is recognized as a hallmark
of quantum chaos 6/33



Level spacing

m Chaotic Hamiltonians exhibit the same energy level spacing
as those predicted by Random Matrix Theory

m If F, is eigenvalues of the Hamiltonian with the ordering
E,+1 > E,. The level spacing is defined by S, = Fp11 — En

m P(s) is probability density for two neighboring
eigenenergies E, and F,; having the spacing s

Poisson P(s)=¢e"?%,
Wigner — Dyson  P(s) = AL e B forg = 1,2,4

m If the distribution is Poissonian, the model is integrable.

For maximally chaotic systems, the distribution follows
Wigner-Dyson statistics
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Level spacing
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Spectral Form Factor (SFF)

m The SFF measures the correlation between eigenvalues at
different time scales

|Z(B + it)|?
|Z(B)/?

SFF(t) .= BE Z o B(Em+En) i Em—En)t

m The presence of a linear ramp in the SFF serve as
signatures of chaos
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Krylov basis

m Time evolution of initial state

i ()"

[ (8) = €™ lo) D n—=Iwn) [on) = H"[t0)

m Consider |¢,) as basis { H'[1bo), H [v0), H?|10), ...}

m Recursively applies the Gram—Schmidt procedure to |1);,)
to generate an orthonormal basis

Lanczos algorithm

The first element of the basis is identified with the initial state
|0) = |aho) and by = 0 .
Other elements are constructed, recursively, as follows

n+1) = (H— an)|n) — baln — 1) |n) = byt |7)
with Lanczos coefficients
an = (nlHn) by = /(0[r)
11/33



Krylov basis

m This recursive procedure stops whenever b, vanishes which
occurs for n =Dy <D

m This new basis {|n),n=0,1,2,--- ,Dy, — 1} is Krylov basis

m Hamiltonian be put into a tridiagonal form

Hln) = an|n) + boy1|n+1) + bofn—1)

m Time evolved state can be expanded in this basis

Dy—1 Dy—1

[9(1) = Z én(t)|n), with Z (D2 =1
n=0 n=0

m The wave function ¢, () satisfies the following equation

_iat¢n(t) = an¢n<t)+bn¢n—1(t)+bn+1¢n+l(t) ¢n(0) = dno
11 / 33



Krylov Complexity

m Special operator in Krylov space whose matrix elements is
exactly diagonal: Number Operator

m The expectation value of this operator, computes Krylov
Complexity (Balasubramanian,2022)

Dy—1 Dy—1
C(t) = WOWI@®) = D nlnlp(t)n) = Y nloa()
n=0 n=0
m The infinite time average of Krylov complexity
B LT Dy—1
C=lim - i (N(t)) dt = ;0 1 Con
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Chaos and Krylov Complexity

Why do we expect K-complexity can probe chaos?

K-complexity can measure chaos by evaluating how states
spread within the Krylov subspace

m exponential growth of the K-complexity Ko(t) o< et could
be interpreted as a signature of chaos (parker,2018)

m K-complexity as a probe of the integrable or chaotic nature
of the system via its late-time saturation value (rabvinovici,2022)

m Multiseed Krylov Complexity ( craps,2024)

m The exhibition of the peak prior to reaching its saturation
value for maximally entangled state ( Erdmenger,2023)

C()

— chaotic

— integrable 15 / 33




Chaos and Krylov Complexity

Why do we expect K-complexity can probe chaos?

K-complexity can measure chaos by evaluating how states
spread within the Krylov subspace

m exponential growth of the K-complexity Ko(t) ekt could
be interpreted as a signature of chaos (parker2018)
m K-complexity as a probe of the integrable or chaotic nature
of the system via its late-time saturation value (rabinovici,2022)
m Multiseed Krylov Complexity ( craps,2024)
m The exhibition of the peak prior to reaching its saturation
value for maximally entangled state ( Erdmenger,2023)
|
What is the impact of different initial states on this
observation?
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Krylov Basis vs Energy Eigenbasis

m Consider a quantum system with a time-independent local
non-degenerate Hamiltonian H with dimension D

|Eq) : Eigenstates E, : Eigenvalues

m The expansion of the initial state in terms of the energy
eigenbasis
D

[¢0) = cal Ea)

a=1

m The expansion of an element of the Krylov space in terms
of the energy eigenbasis

D D
|n> = ana|Ea> Zf*nafma = 6nm
a=1

a=1
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Reducing to Symmetry Block

m In general, the inequality Dy, < D stems from the
symmetries in the model

m Eigenstates can be classified into distinct blocks based on
their symmetry

d1

Odz x d1

di d2
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Reducing to Symmetry Block

m In general, the inequality Dy < D stems from the
symmetries in the model

m Eigenstates can be classified into distinct blocks based on
their symmetry

m The dimension of the Krylov space matches that of the
corresponding symmetry block

m By reducing to a symmetry block, the summation
terminates at Dy,

Dy Dy
|n> = anj‘E]> y Zﬁjfmj = 5nm
j=1 j=1
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Reducing to Symmetry Block

m In general, the inequality Dy < D stems from the
symmetries in the model

m Eigenstates can be classified into distinct blocks based on
their symmetry

m The dimension of the Krylov space matches that of the
corresponding symmetry block

m By reducing to a symmetry block, the summation
terminates at Dy,

Dy Dy,
) = fuil B) > Frifmi = Snm
j=1 j=1
m In the symmetry block, f,; will be invertible
Dy, Dy,
Ej) =D fuiln) D friti = 04
j=1 n=1

16 /33



Number Operator In Energy Eigenbasis

m By writing the recursion relation in the energy eigenbasis,
we can express fn; in terms of fo; = ¢;

gn(E)
fTLj = bn'j Cj

bl = b1+ by gu(Ej) = det(E; — H™)

Hgnq) = <p|H-|q> = aq‘qu"‘ bq+15pq+1 + bq5p4—1 y Pqg= 07 L, N— 1

m The explicit form of the matrix elements of the number
operator in the energy eigenbasis

o & gl B gul )
7L n
M= X i = i Y ")
n=0 n
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Time Evolution of Krylov Complexity
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Time Evolution of Krylov Complexity

m The time evolution of the Number operator in the energy

eigenbasis
Dy Dy
C(1) = (W(OINTD(8) =D PN+ Y 4 e,
J J#£k

m Using C(0) =0

chka_O—>2|CJ| = Zc ciNji

Jk=1 J#k

m Using the fact that the expression for complexity is
manifestly symmetric under the exchange of jand &

Dy—1

cHy=-2Y

( 2
n=0 n- £k

0632 el gn( ) gn( Er)
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Time Evolution of Krylov Complexity

m we arrange the energy eigenvalues in ascending order,
EBi<E<---< EBEp » and reformulate the summation

n . Sj+e
Clty=-4>" )7 >y Slnz(% )ejrel 6% gn( Eire) gn(Ej)
n=0 n: =1 j=1

Site = Lo — Ej
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Time Evolution of Krylov Complexity

m we arrange the energy eigenvalues in ascending order,
EBi<E<---< EBEp » and reformulate the summation

n . Sj+e
Clty=-4>" )7 >y Sln2(% )ejrel 6% gn( Eire) gn(Ej)
n=0 n: =1 j=1

Site = Lo — Ej

|
This is the point where information about the system’s nature
enters into the computations
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Higher Order Level Spacing

m Level spacing for orders 1, 2, 3, 10, and 20 in a chaotic
model

”
M )

10 15 20 s
;

m In chaotic systems, the distribution of s;; exhibits a peak
around a value which is of order one , and this behaviour

extends to other ¢ as well.
m Higher order level spacing in chaotic model ( rao,2024)

1
Pn (S) o Sae—A(Oé)SQ’ a = @y-’- n—1
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Higher Order Level Spacing

m Level spacing for orders 1, 2, 3, 10, and 20 in a integrable
model

m For integrable models, the Poisson distribution indicates
that the peak of level spacing for sj;1 is centered around
Z€ro.

m For larger values of ¢ this peak shifts towards an O(1) value
m Higher order level spacing in integrable model ( rao,2024)

S) = n" Sn—le—ns
Pnl) (n—1)! (212)/33



Time Evolution of Krylov Complexity

= In the chaotic model, for all orders, the sin? factor
oscillates between zero and one, and for large t, its average

1
value approaches 5

C~- Z bl ZZ|CJ| |Ck| 9n(E;) gn(Ey) .

n=0 ( "' J#£k

m In an integrable model, we decompose the complexity into
two parts: the first part involves fast oscillations from s;,
for £ > 1, and the second part corresponds to £ =1

Dw 1 Dw 1D¢ —L
Co(t)=—4 ) ,2 S sin® () el gn( Byie) gn(Ey)
= ()" = o
Dyl Dyl )
. j+1
Ci(t) =—4 ) 2 > Sln2(JTt)|Cj+l|2|Cj|29n(Ej+1)gn(Ej)
n=0 \Un1) =1
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Time Evolution of Krylov Complexity

m For sufficiently large ¢, we can estimate the sin? of both
terms as %, leading to complexity saturation approaching
the infinite time average

m For intermediate (yet still large) ¢, the second part oscillates

m Since the first term does not consider £ = 1, the resultant
constant is smaller than the infinite time average of the

complexity Cy < C

Dy—1 Dy—1
i+1
~ Co—2 Z 7 Z sin? (ZE0) o123 g By1) 90 ()

|
This indicates that, for integrable models, complexity

saturation remains below the infinite time average and

gradually approaches it from below
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Time Evolution of Krylov Complexity

A distinguishing signature of whether a model is chaotic or
integrable can be identified by observing how the Krylov
complexity approaches its infinite time average at late
times

For integrable models, the complexity approaches the
average from below

In chaotic models, complexity reaches the saturation value
within a finite time

Dependin% on the initial state, complexity may also exhibit
a peak before reaching saturation in chaotic models

Cs ~ Tr(ppeN), for chaotic systems
Cs < Tr(ppeN), for integrable systems
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Explicit Example
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The Model

m We consider Ising model

N-1 N
H=—J) ofoi, — Y (907 +hoj).
i=1 i=1

J, g and h are constants which control behavior of model
We consider an arbitrary initial state in the Bloch sphere
which parameterized by two angles 6 and ¢

N

0 . ]
= Z . i in 2| 7).
0, ¢) H(COS2 |Z+);+ e sin 5 |Z >Z)

=1

We consider three initial states where spins are aligned
along the z, y, and z directions, denoted as | X+), | Y+),
and |Z4).
27/33



Level spacing

m We will set h = 0.5, g = —1.05 in chaotic case.
m We will set h =0, g= —1.05 in integrable case.
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Numerical Result

m Time evolution of complexity in chaotic model
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m In chaotic systems, complexity reaches the saturation value given
by the infinite time average at the saturation time.

m In integrable systems, complexity approaches infinite time
average value from below over large times

m For a generic initial state, complexity may or may not exhibit 29 /33
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Numerical Result

m Previous numerical computations have focused on two specific
points within the model’s parameter space correspond to
integrable and nearly maximally chaotic

m It is valuable to explore additional points and compare the
Krylov complexity and level spacing

10f 10
08 \ -

P(S)
T
P(S)
5
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Numerical Result

m Previous numerical computations have focused on two specific
points within the model’s parameter space correspond to
integrable and nearly maximally chaotic

m It is valuable to explore additional points and compare the
Krylov complexity and level spacing
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Conclusion

m We have studied Chos for a quantum system using the
Krylov basis and Krylov complexity

Krylov complexity provides a universal tool to study chaos
in quantum systems

Krylov complexity distinguishes chaotic systems and
integrable system via saturation dynamic
Chaotic systems: Saturation occurs at a finite time and
may exhibit a peak before stabilizing
Integrable systems: Saturation occurs at longer times and
approaches the infinite time average from below

m The Ising model supports theoretical predictions
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Thank You
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