Yukawa Theory

- Consider the Yukawa Lagrangian

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi+i \bar{\psi} \not \partial \psi-m \bar{\psi} \psi-\frac{1}{2} M^{2} \varphi^{2}+g \varphi \bar{\psi} \psi \tag{1}
\end{equation*}
$$

- Use the Feynman rules to write down (at tree level) $i \mathcal{T}$ for the process $e^{-} e^{-} \rightarrow e^{-} e^{-}$ and $\varphi \varphi \rightarrow e^{-} e^{+}$.
- Home Compute the spin-averaged cross section $\left.\left.\langle | \mathcal{T}\right|^{2}\right\rangle$ for $e^{-} e^{-} \rightarrow e^{-} e^{-}$and $\varphi \varphi \rightarrow$ $e^{-} e^{+}$. Use the crossing symmetry to find $\left.\left.\langle | \mathcal{T}\right|^{2}\right\rangle$ for other related processes.
- Add all relevant or marginal possible terms that respect the symmetries of the original Lagrangian (1). Argue why renormalizability of the theory requires the inclusion of these terms.
- Write the improved Lagrangian in terms of the renormalized parameters and the counterterms.
- Write the bare Lagrangian and find the relation between the bare and renormalized couplings in terms of the leading renormalized parameters.
- Draw the diagrams for the one-loop and counterterm corrections to the scalar and fermion propagator and vertex. (Do not do the integrals)
- Home Compute the one-loop contribution to the beta functions and to the anomalous dimensions.

Photons

- Consider the Lagrangian for a free massless vector field modified with a gauge fixing term

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} \xi\left(\partial_{\lambda} A^{\lambda}\right)^{2} \tag{2}
\end{equation*}
$$

- Derive the following equal-time commutation relations

$$
\begin{equation*}
\left[A^{\mu}(t, \vec{x}), A^{\nu}(t, \vec{y})\right], \quad\left[A^{\mu}(t, \vec{x}), \dot{A}^{\nu}(t, \vec{y})\right], \quad\left[\dot{A}^{\mu}(t, \vec{x}), \dot{A}^{\nu}(t, \vec{y})\right] \tag{3}
\end{equation*}
$$

- Home Derive the propagator of the theory.

Scalar QED

- Write down the Lagrangian density of a $\mathrm{U}(1)$ gauge theory coupled to two complex massive scalar fields ϕ and χ with the same coupling constant e.
- Home Perform the perturbation theory at $\mathcal{O}(e)$ to find the time ordered 4-point functions that allows interaction with the gauge field A_{μ}. (Feynman diagrams)

Ward identity

- In the spinor electrodynamics write down the tree level 2-point and 3-point momentum space correlation functions $S\left(p_{1}, p_{2}\right)$ and $V_{\mu}\left(p_{1}, p_{2}, k\right)$ where p 's are the fermion momentum and k the photon momentum.
- Show that $\partial S(p) / \partial p_{\mu}$ are related to $V_{\mu}(p,-p, 0)$ (at tree-level) and argue why this is a consequence of gauge symmetry.
- Home Verify the same relation between the 2-point and the 3-point vertex function at one-loop level.

Non-Abelian gauge theory

- Write down the Lagrangian density for a non-Abelian gauge theory with gauge group G coupled to a complex scalar field in representation R.
- Home Compute the contribution of this scalar field to the β-function, and show that the full beta function for this theory is

$$
\begin{equation*}
\beta(g)=-\frac{g^{3}}{16 \pi^{2}}\left(\frac{11}{3} T(A)-\frac{1}{3} T(R)\right) \tag{4}
\end{equation*}
$$

