ML and Physics Lec I: Introduction to ML

Ghadir Jafari University of Cape Town, Cape Town, South Africa Farhangian University, Tehran, Iran

The Objectives

- $\fbox{1}$ Motivate to learn ML
- 2 Physical intuition for ML concepts
- 3 Introduce some research lines
- 4 Physics and ML connections

Outline

- $\fbox{1}$ An Introduction to ML for Physicist
- 2 ML for Physics
- 3 Physics for ML
- \bigoplus Physics and ML

Where is ML?

- Search engines, Spam filter in email, Recommender systems, Social networks
- \bullet Computer Vision, Speech recognition,
- \bullet Medical diagnosis, Medicine
- \bullet Industry, Economics,
- \bullet Theorem proving, Climate science,
- Self Driving Cars
- …

Technology and ML

- \bullet Advances in computational hardware, the widespread use of GPUs
- $\bullet \,$ Moore's law
- \bullet "Big Data" revolution
- Developments in theoretical aspects and programming
- Artificial neural networks

Physics And ML

- \bullet Information: Physics and Machine Learning
- Gathering and analyzing Data
- Finding patterns, Design models
- Predict the behaviour of (complex) systems
- Learning: passing information from input to outputs

Input Laws,Models *−→* Computation,time Output *,*

Physics Vs Machine Learning

- Physicists using their own knowledge, intelligence and intuition to inform their models
- \bullet Machine Learning: models are agnostic and the machine provides the intelligence by extracting it from data.

Machine Learning

- Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed.
- Task easy for humans to do, but difficult for humans to describe in terms of elementary operations.
- Problems for which existing solutions require a lot of fine-tuning or long lists of rules
- Complex problems for which using a traditional approach yields no good solution
- \bullet Getting insights about complex problems and large amounts of data

AI, ML and DL

Artificial Intelligence

Enabling machines to think like humans

Machine Learning

Training machines to get better at a task without explicit programming

Deep Learning

Using multi-layered networks
for machine learning

Approaches to ML

- Supervised learning: Data inputs and outputs (labels)
- Unsupervised learning: No labels, Clustering, find structure in its input
- Reinforcement learning: dynamic input space, maximize a reward function

Main Elements In ML

- Data Preparation
- Model Selection,
- Training, Optimization
- Validation, Test

From Data to Machines

A Collection of Pairs (x_i, y_i)

$$
Data = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}
$$

- x and y could be anything
- The goal: find (make) a function (machine) f

$$
x_i \longrightarrow f(x_i) = y_i
$$

 \bullet Such that for new data $(x_{\text{new}}, y_{\text{new}})$

 $y_{new} = f(x_{new})$

Classification Vs Regression

- Classification: the y take discrete values (y: labels)
- \bullet Regression: y continuous

Classification *→* Nonlinear regression

Modeling: Function Representation (Approximation)

 \bullet Polynomial Representation

$$
f_a(x) \approx \sum_{n=1}^N a_n x^n
$$

Fourier Representation:

$$
f_c(x) \approx \sum_{n=-N}^N c_n e^{inx}
$$

- e.g. yⁱ ∼ $\sum_{j}^{N} w^{ij}x_j + b_j$
- Any Representation $\Rightarrow f_{\theta}(x)$
- A set of parameters which parameterize the space of functions

$$
\boldsymbol{\theta} = \{\theta_1, \theta_1, \dots, \theta_N\}
$$

Training (Optimization)

Finding suitable $\{\theta_i^{\star}\}\$ such that

$$
y_i \approx f_{\theta^\star}(x_i)
$$

 \bullet Define a cost $\mathcal{C}_i(f_\theta,y_i) \Rightarrow \mathcal{C}_i \approx 0$ when $y_i \approx f(x_i)$

$$
\quad \text{i.e.} \quad \mathcal{C}_i = (y_i - f(x_i))^2
$$

 $\bullet\,$ The Cost Function

$$
\mathcal{C}(\theta) = \frac{1}{N} \sum_i^N \mathcal{C}_i
$$

- Want: $\theta^* \to \mathcal{C}(\theta^*) \approx 0$
- $\bullet \Rightarrow$ Minimizing $\mathcal{C}(\theta)$ in function space

Gradient Descent Method

 \bullet Change in $\mathcal C$ by $\mathrm d \theta$:

$$
\mathrm{d}\mathcal{C}(\theta) = \mathrm{d}\theta \cdot \nabla_{\theta} \mathcal{C},
$$

 \bullet If

$$
\mathrm{d}\theta = -\eta \nabla_{\theta} \mathcal{C}
$$

 \bullet Then:

$$
d\mathcal{C}(\theta) = -\eta |\nabla_{\theta} \mathcal{C}|^2 \le 0
$$

 \bullet Steps toward the local minimum:

$$
\theta \to \theta - \eta \nabla_{\theta} \mathcal{C}
$$

$$
\mathcal{C} \to \mathcal{C} - \eta |\nabla_{\theta} \mathcal{C}|^2
$$

Gradient Descent Method

η: Learning rate, n Number of steps (epochs)

 \bullet Particle moving in a potential

Testing

 \bullet New Data $\{x_{new}, y_{new}\}$

$$
y_{\text{new}} = f(x_{\text{new}})?
$$

 \bullet Training and Test Split:

Example: Linear Regression

- data: *{*xⁱ *,* yi*}*
- \bullet objective: predict $y=f(x)$
- model: $f(x; \vec{\theta}) = mx + b$, $\vec{\theta} = (m, b)$
- $\bullet\,$ loss function:

$$
\mathcal{C}(\theta) = \frac{1}{N} \sum_{i=1}^N \left(y_i - f(x_i)\right)^2
$$

 $\bullet\,$ model training: optimal parameters

$$
\hat{\vec{\theta}} = \arg\min \mathcal{C}(\vec{\theta})
$$

- Problem: A program to recognize the images of handwritten digits
- Input:
	- $|q, 5, 2, 2, 4, 7, 8, 4, 6, 6, 9, 9, 2, 7, 5, 7, 5, 9, 1, 2,$ $9.3.0.6.6.2.1.5.5.5.6.5.1.7.6.0.7.9.0.1.$ $\pmb{b}, \mathring{\mathsf{q}}\,,\, \mathring{\mathsf{q}}\,,\, \mathring{\mathsf{3}}\,,\, \mathcal{P},\, \mathcal{q}\,,\, \mathcal{A}\,,\, \mathcal{S}\,,\, \pmb{\varphi}\,,\, \pmb{\varphi}\,,\, \pmb{\varphi}\,,\, \mathring{\mathsf{3}}\,,\, \mathring{\mathsf{b}}\,,\, \mathring{\mathsf{3}}\,,\, \mathring{\mathsf{b}}\,,\, \mathcal{q}\,,\, \mathring{\mathsf{q}}\,,\, \pmb{\varrho}\,,\, \pmb{\varrho},\, \pmb{\varDelta},$ \overrightarrow{J} , \overrightarrow{Q} , $0.5.4.4.7.7.7.0.0.3.0.8.2.6.8.1.2.0.1.9.31$
- Output: Digit letters *{*0*,* 1*,* 2*,* 3*,* 4*,* 5*,* 6*,* 7*,* 8*,* 9*}*
- Impossible algorithmic programming
- Machine Learning: computers learn (doing tasks) without being explicitly programmed

Example: Learning The Digits

```
The Data:
```
 $\big\{\big\{\bigodot \to 0\,,\ \, \text{\textbf{O}} \to 0\,,\ \, \text{\textbf{O}} \to 0\,,\ \, \text{\textbf{O}} \to 0\,,\,\, \text{\textbf{O}} \to 0\big\},$ $\Big\{\textcolor{blue}{\text{2}\rightarrow 2\textcolor{black}{,}} \textcolor{blue}{\text{3}\rightarrow 2\textcolor{black}{,}} \textcolor{blue}{\text{3}\rightarrow 2\textcolor{black}{,}} \textcolor{blue}{\text{2}\rightarrow 2\textcolor{black}{,}} \textcolor{blue}{\text{3}\rightarrow 2\textcolor{black}{,}} \textcolor{blue}{\text{2}\rightarrow 2\textcolor{black}{,}} \textcolor{blue}{\text{2}\rightarrow 2\textcolor{black}{,}} \textcolor{blue}{\text{2}\rightarrow 2\textcolor{black}{,}} \textcolor{blue}{\text{3}\rightarrow 2\textcolor{black}{,}} \textcolor{blue}{\text{4}\rightarrow 2\textcolor{black$ $\{ \forall \rightarrow 4, \forall/ \rightarrow 4, \forall \rightarrow 4 \}.$ $\Big\{\textstyle\int\rightarrow5,\textstyle\frac{\pi}{2}\rightarrow5,\textstyle\frac{\pi}{2}\rightarrow5,\textstyle\frac{\pi}{2}\rightarrow5,\textstyle\frac{\pi}{2}\rightarrow5,\textstyle\frac{\pi}{2}\rightarrow5,\textstyle\frac{\pi}{2}\rightarrow5,\textstyle\frac{\pi}{2}\rightarrow5,\textstyle\frac{\pi}{2}\rightarrow5,\textstyle\frac{\pi}{2}\rightarrow5\Big\},$ $\Big\{ \big\{ \begin{array}{ll} \rightarrow 6 \,, \ \ \textit{6} \rightarrow 6 \,, \ \textit{6} \rightarrow 6 \Big\}, \end{array} \right.$ $\{ \mathcal{J} \rightarrow^7, \mathcal{T} \rightarrow^7 \},$ $\big\{\textit{\textbf{S}}\rightarrow\textit{\textbf{8}},\textit{\textbf{S}}\rightarrow\textit{\textbf{8}},\textit{\textbf{S}}\rightarrow\textit{\textbf{8}},\textit{\textbf{S}}\rightarrow\textit{\textbf{8}},\textit{\textbf{S}}\rightarrow\textit{\textbf{8}},\textit{\textbf{S}}\rightarrow\textit{\textbf{8}},\textit{\textbf{S}}\rightarrow\textit{\textbf{8}},\textit{\textbf{S}}\rightarrow\textit{\textbf{8}},\textit{\textbf{S}}\rightarrow\textit{\textbf{8}},\textit{\textbf{S}}\rightarrow\textit{\textbf{8}}\big\},$ $\{q \rightarrow 9, q \rightarrow 9\}$

 \bullet Outputs are labels (discrete values)

 20×20 Matrices $([0, 1]^{400}) \rightarrow \{1, 2, \ldots, 10\}$

- $\bullet\,$ How to model?
- \bullet Discrete output: classification problem
- A function to $[0,1]^{10}$
- A linear model $f(x_n) = w^{in}x_n + b^i$

• Using the logistic sigmoid function :
$$
\sigma(x) = \frac{1}{1 + e^{-x}}
$$

The model $f(x_n) = \sigma(w^{in}x_n + b^i)$

 \bullet Optimization: Find a minimum for

$$
\mathcal{C}(w,b) = \frac{1}{N}\sum_{i=1}^N \left(y_i - f(x_i)\right)^2
$$

- $\bullet\,$ No much precision!
- $\bullet\,$ Is the model simple?
- \bullet How to generalize?
- $x_n \to w^{in}x_n + b^i \to \sigma(w^{in}x_n + b^i)$
- The number of parameters : 10 *∗* 400 + 10

Neural Networks

$$
\begin{aligned} z_i^{(1)} &\equiv b_i^{(1)} + \sum_{j=1}^{n_0} W_{ij}^{(1)} x_j, \quad \text{for} \quad i = 1, \ldots, n_1 \\ z_i^{(1)} &\to \sigma(z_i^{(1)}) \\ z_i^{(2)} &\equiv b_i^{(2)} + \sum_{j=1}^{n_1} W_{ij}^{(2)} \sigma(z_j^{(1)}), \quad \text{for} \quad i = 1, \ldots, n_2 \\ &\vdots \\ z_i^{(\ell)}(x) &\equiv b_i^{(\ell)} + \sum_{j=1}^{n_{\ell-1}} W_{ij}^{(\ell)} \sigma\left(z_j^{(\ell-1)}\right), \quad \text{for} \quad i = 1, \ldots, n_\ell \\ &\vdots \\ \text{for} \quad \ell = 1, \ldots, L \\ z_i^{(L)} &\to \sigma(z_i^{(L)}) \\ &\Rightarrow y = f_{\{w, b\}}(x) = \sigma(z_j^{(L)}) \end{aligned}
$$

Neural Networks

 \bullet A neural network is a composite nonlinear function :

$$
y = f_L(w^L f_{L-1}(w^{L-1}...f_1(w^1 x)\dots))
$$

- Basic Ingredients: Neurons
- Parameters $\{w_{i,j}^{\ell}, b_i^{\ell}\}\$

Image Recognition

Neural Networks Architecture

- The Hyper-parameters: number of layers L, The number of neurons in each layer n*^ℓ* , Initialization of Parameters, Learning Rate *η*, The Number of Epochs, ...
- \bullet The activation function $\sigma(x)$ e.g.:

NN as Universal Approximation

- Neural Networks can represent any functions
- For every y,d,D and ϵ

$$
y:\mathbb{R}^d\to\mathbb{R}^D
$$

 $\bullet\,$ There exist a network $f_{w,b}$ such that

$$
\|y(x)-f_{w,b}(x)\|<\epsilon
$$

- *⇒* Neural network: A flexible representation for high-dim functions
- Importance: Every process is a function computation

The backpropagation Algorithm

 \bullet Training: the calculation of $\nabla_\theta \mathcal{C}$ at each step

$$
\mathcal{C}(\vec{\theta}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2
$$

 $\vec{\theta} = \{w_{i,j}^{\ell}, b_i^{\ell}\}\$

- \bullet How to compute for NN?
- Suppose $w_{i,j}^{\ell} \rightarrow w_{i,j}^{\ell} + \delta w_{i,j}^{\ell}$
- Chain Rule:

$$
\nabla_{w^\ell} \mathcal{C} = [\left(f^\ell \right)^\prime \! \circ \! \left(w^{\ell+1} \right)^T \!\cdots \! \circ \! \left(w^{L-1} \right)^T \!\cdot \! \left(f^{L-1} \right)^\prime \! \circ \! \left(w^L \right)^T \!\cdot \! \left(f^L \right)^\prime \! \circ \! \nabla_{z^\ell} \mathrm{C}] \left(z^{\ell-1} \right)^T
$$

Deep Learning

- Large number of layers in NN
- *⇒* More efficient

The Black Box?

- No Theoretical explanations of deep learning
- Why the output $f_{\theta^*}(x)$ is given on an input x
- Hyper-Parameters: trial-and-error
- The activation functions, the widths of the layers and the depth
- which learning problems are computationally tractable?
- *⇒* Black box

A Theory for Deep Learning?

Complexity *⇒* Statistical explanation

 $P(x|f_{\theta}(x))$ Or/And $P(f_{\theta}(x)|x)$

- \bullet Statistical Theory beneath experimental thermodynamic rules
- \bullet Like statistical mechanics explains how the macroscopic laws of thermodynamics describing the steam engines.
- *⇒* A theory for machines

Unsupervised Learning

No outputs (labels)

$$
\mathcal{D} = \{x_i\}
$$

- Depend on the specific details of the task
- We assume that there exists some probability distribution $P(x)$
- The model $Q_{\theta}(x)$
- $\bullet\,$ Make them similar
- \bullet Reduce the relative entropy

$$
D_{KL}(P \parallel Q) = \sum_{x \in \mathcal{D}} P(x) \log \left(\frac{P(x)}{Q_{\theta}(x)} \right).
$$

Both modeling and optimization *⇒* Deep Learning help

Principal component analysis

- \bullet Compress the data to loss information as less as possible
- Dimension Reduction

$\mbox{Simple Example}^1$

 \bullet Data from an oscillating spring

1 arXiv:1404.1100

Which Problems could be the subject of ML?

- ML: Direct relation of input and outputs,
- Data, Modeling, Optimization
- *⇒* In Principle any problem

Some Textbooks

- Pattern recognition and machine learning , Bishop, C M (2006),
- Deep Learning, Ian Goodfellow, Yoshua Bengio, Aaron Courville¹
- Neural Networks and Deep Learning, Michael Nielsen ²

¹www.deeplearningbook.org

 $\overline{}^2$ neuralnetworksanddeeplearning.com

Programming

- Most Common languages: Python and R
- Libraries: Tensorflow, Scikit-learn, Keras, PyTorch
- Prerequisites: NumPy, pandas, and Matplotlib
- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Aurélien Geron¹
- Wolfram Mathematica

¹ github.com/ageron/handson-ml2

Summery

- \bullet ML deal with modeling and predicting similar to physics
- \bullet Main elements include modeling and optimization
- \bullet Neural networks provide a flexible modeling
- \bullet With the cost of being black box