ML and Physics Lec I: Introduction to ML

Ghadir Jafari

University of Cape Town, Cape Town, South Africa

Farhangian University, Tehran, Iran

The Objectives

- 1) Motivate to learn ML
- 2) Physical intuition for ML concepts
- 3) Introduce some research lines
- 4) Physics and ML connections

Outline

1) An Introduction to ML for Physicist

- 2) ML for Physics
- 3 Physics for ML
- 4 Physics and ML

Where is ML?

- Search engines, Spam filter in email, Recommender systems, Social networks
- Computer Vision, Speech recognition,
- Medical diagnosis, Medicine
- Industry, Economics,
- Theorem proving, Climate science,
- Self Driving Cars

• ...

Technology and ML

- Advances in computational hardware, the widespread use of GPUs
- Moore's law
- "Big Data" revolution
- Developments in theoretical aspects and programming
- Artificial neural networks

Physics And ML

- Information: Physics and Machine Learning
- Gathering and analyzing Data
- Finding patterns, Design models
- Predict the behaviour of (complex) systems
- Learning: passing information from input to outputs

$$\fbox{Input} \underset{Computation, time}{\overset{Laws, Models}{\longrightarrow}} \fbox{Output} ,$$

Physics Vs Machine Learning

- Physicists using their own knowledge, intelligence and intuition to inform their models
- Machine Learning: models are agnostic and the machine provides the intelligence by extracting it from data.

Machine Learning

- Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed.
- Task easy for humans to do, but difficult for humans to describe in terms of elementary operations.
- Problems for which existing solutions require a lot of fine-tuning or long lists of rules
- Complex problems for which using a traditional approach yields no good solution
- Getting insights about complex problems and large amounts of data

AI, ML and DL

Artificial Intelligence

Enabling machines to think like humans

Machine Learning

Training machines to get better at a task without explicit programming

Deep Learning

Using multi-layered networks for machine learning

Approaches to ML

- Supervised learning: Data inputs and outputs (labels)
- Unsupervised learning: No labels, Clustering, find structure in its input
- Reinforcement learning: dynamic input space, maximize a reward function

Main Elements In ML

- Data Preparation
- 2 Model Selection,
- 3) Training, Optimization
 -) Validation, Test

From Data to Machines

 \bullet A Collection of Pairs (x_i,y_i)

$$Data = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$$

- x and y could be anything
- The goal: find (make) a function (machine) f

$$x_i \longrightarrow f(x_i) = y_i$$

• Such that for new data (x_{new}, y_{new})

$$y_{\rm new} = f(x_{\rm new})$$

Classification Vs Regression

- Classification: the y take discrete values (y: labels)
- Regression: y continuous

 $\bullet~{\rm Classification} \rightarrow {\rm Nonlinear}~{\rm regression}$

Modeling: Function Representation (Approximation)

• Polynomial Representation

$$f_a(x)\approx \sum_{n=1}^N a_n x^n$$

• Fourier Representation:

$$f_c(x)\approx \sum_{n=-N}^N c_n e^{inx}$$

• e.g.
$$y^i \sim \sum_j^N w^{ij} x_j + b_j$$

- Any Representation $\Rightarrow f_{\theta}(x)$
- A set of parameters which parameterize the space of functions

$$\boldsymbol{\theta} = \{\theta_1, \theta_1, \dots, \theta_N\}$$

Training (Optimization)

• Finding suitable $\{\theta_i^\star\}$ such that

 $y_i \approx f_{\theta^\star}(x_i)$

 \bullet Define a cost $\mathcal{C}_i(f_\theta,y_i) \Rightarrow \mathcal{C}_i \approx 0$ when $y_i \approx f(x_i)$

i.e.
$$C_i = (y_i - f(x_i))^2$$

• The Cost Function

$$\mathcal{C}(\theta) = \frac{1}{N} \sum_{i}^{N} \mathcal{C}_{i}$$

- Want: $\theta^* \to \mathcal{C}(\theta^*) \approx 0$
- \Rightarrow Minimizing $C(\theta)$ in function space

Gradient Descent Method

• Change in \mathcal{C} by $d\theta$:

$$\mathrm{d}\mathcal{C}(\theta) = \mathrm{d}\theta \cdot \nabla_{\theta}\mathcal{C},$$

• If

$$\mathrm{d}\theta = -\eta \nabla_{\theta} \mathcal{C}$$

• Then:

$$d\mathcal{C}(\theta) = -\eta |\nabla_{\theta}\mathcal{C}|^2 \le 0$$

• Steps toward the local minimum:

$$\begin{aligned} \theta &\to \theta - \eta \nabla_{\theta} \mathcal{C} \\ \mathcal{C} &\to \mathcal{C} - \eta |\nabla_{\theta} \mathcal{C}|^2 \end{aligned}$$

Gradient Descent Method

• η : Learning rate, n Number of steps (epochs)

• Particle moving in a potential

Testing

 \bullet New Data $\{x_{new}, y_{new}\}$

$$y_{new} = f(x_{new})?$$

• Training and Test Split:

Example: Linear Regression

- \bullet data: $\{x_i,y_i\}$
- objective: predict y = f(x)
- model: $f(x; \vec{\theta}) = mx + b$, $\vec{\theta} = (m, b)$
- loss function:

$$\mathcal{C}(\theta) = \frac{1}{N}\sum_{i=1}^{N}{(y_i - f(x_i))^2}$$

• model training: optimal parameters

$$\hat{\vec{\theta}} = \arg\min \mathcal{C}(\vec{\theta})$$

- Problem: A program to recognize the images of handwritten digits
- Input:

[9, 5, 2, 2, 4, 4, 8, 4, 6, 6, 4, 9, 2, 7, 5, 4, 5, 4, 1, 2, 9, 3, 0, 6, 6, 2, 1, 5, 5, 5, 6, 5, 1, 7, 6, 0, 7, 9, 0, 1, 0, 4, 4, 3, 8, 4, 4, 8, 4, 9, 4, 3, 5, 5, 6, 5, 6, 4, 9, 8, 9, 2, 1, 0, 4, 5, 7, 4, 4, 1, 4, 9, 3, 4, 0, 8, 9, 7, 5, 7, 0, 6, 5, 5, 4, 4, 7, 7, 0, 0, 3, 0, 8, 2, 6, 8, 1, 2, 0, 1, 9, 3]

- Output: Digit letters $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Impossible algorithmic programming
- Machine Learning: computers learn (doing tasks) without being explicitly programmed

• The Data:

0}}	ightarrow 0,	0	ightarrow 0,	٥	ightarrow 0,	0	\rightarrow 0,	0	\rightarrow 0,	0	ightarrow 0 ,	٥	ightarrow 0,	0	\rightarrow 0,	д	\rightarrow 0,	0	ightarrow 0,
] }	→ 1 ,	/	→ 1,	1	ightarrow 1,	/	→ 1,	I	→ 1,	ľ	ightarrow 1,	١	→ 1,	/	→ 1,	l	→ 1,	١	$ ightarrow 1\Big\}$,
{ 2	ightarrow 2,	2	ightarrow 2,	2	\rightarrow 2,	2	ightarrow 2,	2	\rightarrow 2,	2	\rightarrow 2 ,	2	ightarrow 2,	٦	\rightarrow 2,	2	\rightarrow 2 ,	ລ	ightarrow 2],
{ 3	→ 3 ,	3	→ 3 ,	3	→ 3,	3	→ 3 ,	3	→ 3,	3	→ 3 ,	3	→ 3,	3	ightarrow 3,	3	→ 3,	3	\rightarrow 3 $\Big\}$,
{ 4	ightarrow 4,	4	ightarrow 4,	ч	ightarrow 4,	Y	ightarrow 4,	4	ightarrow 4,	4	ightarrow 4,	4	ightarrow 4,	4	ightarrow 4,	4	ightarrow 4,	4	$ ightarrow$ 4 $\Big\}$,
2 }	ightarrow 5,	5	ightarrow 5,	5	ightarrow 5,	5	ightarrow 5,	5	ightarrow 5,	5	ightarrow 5,	5	ightarrow 5,	5	\rightarrow 5,	5	ightarrow 5,	5	ightarrow 5],
{ (→ 6 ,	6	→ 6 ,	6	ightarrow 6,	6	→ 6 ,	6	→ 6,	6	→ 6,	Ь	→ 6 ,	6	ightarrow 6,	6	→ 6 ,	6	→ 6 },
{7	→ 7,	7	→ 7,	7	→ 7,	9	→ 7,	7	→ 7,	2	→ 7,	7	→ 7,	7	→ 7,	7	→ 7,	7	→ 7],
{ 8	→ 8,	F	ightarrow 8,	8	ightarrow 8,	8	→ 8,	8	ightarrow 8,	ď	ightarrow 8,	8	→ 8,	8	ightarrow 8,	g	ightarrow 8,	8	→ 8 },
{9	→ 9 ,	9	ightarrow 9,	9	ightarrow 9,	9	→ 9 ,	9	→ 9,	9	ightarrow 9,	٩	→ 9 ,	9	ightarrow 9,	9	→ 9 ,	9	$ ightarrow$ 9 $\Big\} \Big\}$

• Each image a matrix:

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 Θ 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

• Outputs are labels (discrete values)

 20×20 Matrices $([0, 1]^{400}) \rightarrow \{1, 2, \dots, 10\}$

- How to model?
- Discrete output: classification problem
- A function to $[0,1]^{10}$
- $\bullet \ A \ linear \ model \ f(x_n) = w^{in} x_n + b^i$
- Using the logistic sigmond function : $\sigma(\mathbf{x}) = \frac{1}{1+e^{-\mathbf{x}}}$

• The model $f(x_n) = \sigma(w^{in}x_n + b^i)$

• Optimization: Find a minimum for

$$\mathcal{C}(w,b) = \frac{1}{N}\sum_{i=1}^{N}\left(y_i - f\left(x_i\right)\right)^2$$

- No much precision!
- Is the model simple?
- How to generalize?
- $\bullet \ x_n \to w^{in} x_n + b^i \to \sigma(w^{in} x_n + b^i)$
- The number of parameters : 10 * 400 + 10

Neural Networks

$$\begin{split} z_i^{(1)} &\equiv b_i^{(1)} + \sum_{j=1}^{n_0} W_{ij}^{(1)} x_j, \quad \mathrm{for} \quad i=1,\ldots,n_1 \\ z_i^{(1)} &\to \sigma(z_i^{(1)}) \\ z_i^{(2)} &\equiv b_i^{(2)} + \sum_{j=1}^{n_1} W_{ij}^{(2)} \sigma(z_j^{(1)}), \quad \mathrm{for} \quad i=1,\ldots,n_2 \\ &\vdots \\ z_i^{(\ell)} (x) &\equiv b_i^{(\ell)} + \sum_{j=1}^{n_{\ell-1}} W_{ij}^{(\ell)} \sigma\left(z_j^{(\ell-1)}\right), \quad \mathrm{for} \quad i=1,\ldots,n_\ell \\ &\vdots \\ \mathrm{for} \quad \ell=1,\ldots,L \\ z_i^{(L)} \to \sigma(z_i^{(L)}) \\ &\Rightarrow y = f_{\{w,b\}}(x) = \sigma(z_j^{(L)}) \end{split}$$

Neural Networks

• A neural network is a composite nonlinear function :

- Basic Ingredients: Neurons
- Parameters $\{w_{i,j}^{\ell}, b_i^{\ell}\}$

Learning The Digits

Image Recognition

Neural Networks Architecture

- The Hyper-parameters: number of layers L, The number of neurons in each layer n_ℓ, Initialization of Parameters, Learning Rate η, The Number of Epochs, ...
- The activation function $\sigma(\mathbf{x})$ e.g.:

NN as Universal Approximation

- Neural Networks can represent any functions
- \bullet For every y,d,D and ϵ

$$y:\mathbb{R}^d\to\mathbb{R}^D$$

 \bullet There exist a network $f_{w,b}$ such that

$$\|y(x)-f_{w,b}(x)\|<\varepsilon$$

- $\bullet \Rightarrow$ Neural network: A flexible representation for high-dim functions
- Importance: Every process is a function computation

The backpropagation Algorithm

• Training: the calculation of $\nabla_{\theta} \mathcal{C}$ at each step

$$\mathcal{C}(\vec{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - f\left(x_i\right)\right)^2$$

$$\vec{\theta} = \{w_{i,j}^\ell, b_i^\ell\}$$

- How to compute for NN?
- Suppose $w^\ell_{i,j} \to w^\ell_{i,j} + \delta w^\ell_{i,j}$
- Chain Rule:

$$\nabla_{w^{\ell}}\mathcal{C} = [\left(f^{\ell}\right)' \circ \left(w^{\ell+1}\right)^{\mathrm{T}} \cdots \circ \left(w^{L-1}\right)^{\mathrm{T}} \cdot \left(f^{L-1}\right)' \circ \left(w^{L}\right)^{\mathrm{T}} \cdot \left(f^{L}\right)' \circ \nabla_{z^{\ell}} C] \left(z^{\ell-1}\right)^{\mathrm{T}}$$

Deep Learning

- Large number of layers in NN
- $\bullet \Rightarrow \text{More efficient}$

The Black Box?

- No Theoretical explanations of deep learning
- Why the output $f_{\theta^*}(x)$ is given on an input x
- Hyper-Parameters: trial-and-error
- The activation functions, the widths of the layers and the depth
- which learning problems are computationally tractable?
- \Rightarrow Black box

A Theory for Deep Learning?

 $\bullet~{\rm Complexity} \Rightarrow {\rm Statistical~explanation}$

 $P(x|f_{\theta}(x)) \quad Or/And \quad P(f_{\theta}(x)|x)$

- Statistical Theory beneath experimental thermodynamic rules
- Like statistical mechanics explains how the macroscopic laws of thermodynamics describing the steam engines.
- $\bullet \Rightarrow \mathbf{A}$ theory for machines

Unsupervised Learning

• No outputs (labels)

$$\mathcal{D} = \{x_i\}$$

- Depend on the specific details of the task
- \bullet We assume that there exists some probability distribution $\mathbf{P}(\mathbf{x})$
- The model $Q_{\theta}(x)$
- Make them similar
- Reduce the relative entropy

$$\mathbf{D}_{\mathrm{KL}}(\mathbf{P} \parallel \mathbf{Q}) = \sum_{\mathbf{x} \in \mathcal{D}} \mathbf{P}(\mathbf{x}) \log \left(\frac{\mathbf{P}(\mathbf{x})}{\mathbf{Q}_{\theta}(\mathbf{x})} \right)$$

 $\bullet\,$ Both modeling and optimization \Rightarrow Deep Learning help

Principal component analysis

- Compress the data to loss information as less as possible
- Dimension Reduction

Simple Example¹

• Data from an oscillating spring

¹arXiv:1404.1100

Which Problems could be the subject of ML?

- ML: Direct relation of input and outputs,
- Data, Modeling, Optimization
- $\bullet\,\,\Rightarrow\, \mathrm{In}$ Principle any problem

Some Textbooks

- Pattern recognition and machine learning , Bishop, C M (2006),
- \bullet Deep Learning, Ian Goodfellow, Yoshua Bengio, Aaron Courville 1
- $\bullet\,$ Neural Networks and Deep Learning, Michael Nielsen 2

¹www.deeplearningbook.org

 $^{^{2}}$ neural networks and deep learning.com

Programming

- Most Common languages: Python and R
- Libraries: Tensorflow, Scikit-learn, Keras, PyTorch
- Prerequisites: NumPy, pandas, and Matplotlib
- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Aurélien Geron¹
- Wolfram Mathematica

 $^{^{1}}$ github.com/ageron/handson-ml2

Summery

- ML deal with modeling and predicting similar to physics
- Main elements include modeling and optimization
- Neural networks provide a flexible modeling
- With the cost of being black box