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What is Physics?

• A Physical law:
Si

L−→
∆t

Sf ,

• A restriction on the space of (mathematically) possible S
• How we make theories?
• The whole Process:

1 Information from nature
2 (Complicated ) process of analysis by the physicist

(intelligence)
3 Making Models
4 Prediction of new Phenomena

• In Brief: Data ⇒ Training (intelligence) ⇒ Predictions
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The Physics Challenges

1 What are good representations of States S and Laws L?
• The representations (S,L) are usually (in practice and

maybe in principle) effective
2 Assuming Universality of a given description, Applying it

to different systems
• Description of larger systems in term of smaller systems

(Different Level of effectiveness)
• Solving models

3 Relation of description with Previous Knowledge and
Models
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Two Paradigms for Programming

• Hard problems: a lot of computational steps (time) or/and
memory

• Finite amount of resource
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Two Computations
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Inverse problems and ML

• e.g. Discovery of Neptune from the perturbed trajectory of
Uranus.

• Earth density from acoustic wave
• Tomographic reconstruction, i.e CT scan
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An Inverse Problem

• Given the input x find the value of f(x) by:

f(x) =
n∑

k=0
Jkxk

• The Inverse:
1. given an output y1 find the input x1 such that y1 = f(x1)
2. given some data {(x1, y1), (x2, y2), . . . } find the function

y = f(x), i.e. Jk
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• Example:

yi =
m∑

k=1
Jikxk

• Very special cases: (n = m, det J ̸= 0)

xk =

m∑
i=1

[
J−1]

ki yi

• In many cases, the solution to the inverse problem is
ill-posed.

• In general it is possible to define:

L ≡
n∑

i=1

(
yi −

m∑
k=1

Jikxk

)2

= 0

• seek an xk that minimizes L
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Inverse Problem And ML

• ⇒ Optimization problem
• ⇒ Representing the map with an NN
• Estimation of parameters of the model based on

observation
• Printing Vs Digit Recognition

9/31



Inverse Problems in Physics

• Knowing objects that cannot be measured directly
• Infering the cause from the results
• Determining physical laws and governing equations
• Determining physical constants
• All physics innovations are inverse problems
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Scattering And Imaging

• Unknown Object

• The image is reconstructed from information of scattered
waves

11/31



Inverse Scattering Problem

• Unknown Potential, Law,

• The potential is determined from information such as
scattering amplitudes
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Simulations and ML

• Use of computer simulations to generate samples of labeled
training data {xi, yi}

• Learn fast neural network to generate the results of
simulations.

• Data generation
• Learn the network once
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Machine learning phases of matter1, 2

• Large state space → complexity
• Classification of phases
• Identify phases from state
• ⇒ neural-network classification
• Study of phase transitions and order parameters
• Classify The Ising Phases

1nature.com/articles/nphys4035
2nature.com/articles/nphys4037
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https://www.nature.com/articles/nphys4035
https://www.nature.com/articles/nphys4037


String Theory And ML

• String Theory: First Prediction: 10d spacetime
• Don’t Worry ⇒ M10 = M4 × X6

• A lot of possibilities!
• Topology and geometry of compact dimensions (in addition

of Branes and Fluxes)
• The problem is to select a manifold necessary for

compaction of string theory so that it becomes the
standard model of elementary particles

• ⇒ An inverse problem
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2-D Manifolds
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String Phenomenology to CY

• Classical vacuum of string theory on X10 preserves
N = 1SUSY in M4

• Killing Spinor ⇒ Covariant constant spinor ⇒ Ricci-Flat
internal X6 space

• The gauge group/particle content of low energy theory
depends on the topology of compact space

• Direct Problem: Find the resulting 4D theory from a given
topology?
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Calabi–Yau manifolds
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Complete Intersection Calabi-Yau

• CY as Intersections of hypersurfaces in Pn

• Configuration matrices:

K =


n1 q1

1 q2
1 . . . qK

1
n2 q1

2 q2
2 . . . qK

2
...

...
... . . . ...

nm q1
m q2

m . . . qK
m


m×K

• Classifying the CICY matrices, checking redundancies and
equivalences

• Obtained ∼ 1010 configuration
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Train The CYs

• Training data: {ki, h (ki)} from very lengthy calculations
• Being Similar to SM as a label:

• Design the network ⇒ Probe the landscape, More than
90% accuracy

• Refer to HRD problem
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The CY Landscape: from Geometry to Physics, to ML
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Machine-Learning the Classification of Spacetimes 1

• Petrov-Penrose Classification of
Spacetimes

Ψ0 ≡ Cabcdkambkcmd
, Ψ1 ≡ Cabcdkalbkcmd

Ψ2 ≡ Cabcdkambm̄cld Ψ3 ≡ Cabcdkalbm̄cld

Ψ4 ≡ Cabcdm̄albm̄cld

Ψ0 − 4zΨ1 + 6z2
Ψ2 − 4z3

Ψ3 + z4
Ψ4 = 0

• NNs: {Ψ0,Ψ1,Ψ2,Ψ3,Ψ4} →
Types

1arXiv:2201.01644 , Y. He, J. Manuel P. Ipiña
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https://arxiv.org/abs/2201.01644


Particle Physics
• Experiments such as CMS and ATLAS at the LHC

generate petabytes of data per year.
• Features xi in detector labeled yi by particles or

interactions ⇒ classification
• Signal and Background discrimination
• Jet Classification (heavy and light quarks, gluons, and W,

Z, and H bosons)
• Fast Simulation: SM and BSM leads to which results
• Search for anomalies: classify SM and BSM events
• Neutrino physics, phase transitions of quantum

chromodynamics, ...
• Many other applications1, 2

1arXiv:1807.02876
2arXiv:1806.11484
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https://arxiv.org/abs/1807.02876
https://arxiv.org/abs/1806.11484


Cosmology And Astrophysics

• Gravitational lens finding
• Simulation
• Inverse problem: Interferometer Gravitational-Wave

Observatory (LIGO) time series to the underlying
waveform from a gravitational wave

• Data recorded on detectors → gravitational wave
• Reconstruct the image of a black hole from data from array

of telescopes (EHT)
• Classification of galaxies
• …1

1arXiv:2203.08056
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https://arxiv.org/abs/2203.08056


Other Applications

• Other examples of inverse problems in physics
• Inverse of boundary value problem
• Landscape of Theories e.g. Conformal Bootstrap, Space of

Integrable Theories
• Quantum State Tomography1: Reconstruct the density

matrix of an unknown quantum state, through
experimentally available measurements

• AdS/CFT correspondence: determining gravity theory, the
inside (bulk), from the quantum field theory living on the
boundary

1arxiv:1703.05334
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https://arxiv.org/abs/1703.05334


Wave Function of a Quantum Many-Body System

• The Quantum state

|ψ⟩ =
∑

s1,··· ,sN

ψ (s1, · · · , sN) |s1⟩ · · · |sN⟩

• The nonlinear function ψ transforms the input
(s1, , sN) = (0, 0, 1, 0, 1, ) into output ψ(0, 0, 1, 0, 1, ).

• Minimize the energy function

E =
⟨ψ|H|ψ⟩
⟨ψ | ψ⟩

• The ground state
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The NN Quantum States

• Neural networks as a method of constructing quantum
states
Represent the nonlinear state function as |Ψ⟩ by

Ψ(q) ≡ g(L)
(
θ(L) . . . g(2)

(
θ(2)g(1)

(
θ(1)q

)))
• An Energy Function
• ⇒ Optimization ⇒ θ⋆

• ⇒ Ψθ⋆(q)
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RBM and The Wave Function1

• Restricted Boltzmann Machines:

• The Neural-Network Quantum States:
ΨM(S;W) =

∑
{hi}

e
∑

j ajσ
z
j +

∑
i bihi+

∑
ij Wijhiσ

z
j

• Minimize the Energy Function

E(W) = ⟨ΨM|H|ΨM⟩ / ⟨ΨM | ΨM⟩

• Exponential to polynomial complexity
1Science 355, 602 (2017) 8.
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https://www.science.org/doi/10.1126/science.aag2302


DBM and The Wave Function1

• Deep Boltzmann Machines:

ΨW (σz) =
∑
{h,d}

exp

∑
i

aiσ
z
i +

∑
ij

σz
i Wijhj +

∑
j

bjhj +
∑
jk

hjdkW′
jk +

∑
k

b′
kdk



1Nat Commun 9, 5322 (2018).
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https://doi.org/10.1038/s41467-018-07520-3


Some Refrences

1 A high-bias, low-variance introduction to Machine Learning
for physicists: arXiv:1803.08823

• Introduction to the core concepts and tools of machine
learning

• Python Jupyter notebooks
2 Deep Learning and Physics; Akinori Tanaka, Akio Tomiya,

and Koij Hashimoto,
springer.com/book/10.1007/978-981-33-6108-9
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https://arxiv.org/abs/1803.08823
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://link.springer.com/book/10.1007/978-981-33-6108-9


Summery

• Technique and methods of ML are well adapted to physics
• Using ML in physics is rapidly expanding
• The range of problems vary from classical physics, to

quantum theory, particle physics and string theory
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