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What is Physics?

A Physical law:
Si f} Sf y
At

A restriction on the space of (mathematically) possible S

o How we make theories?

The whole Process:
@ Information from nature

@ (Complicated ) process of analysis by the physicist
(intelligence)

@ Making Models
@ Prediction of new Phenomena
In Brief: Data = Training (intelligence) = Predictions
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The Physics Challenges

@ What are good representations of States S and Laws L7
® The representations (S, £) are usually (in practice and
maybe in principle) effective
@ Assuming Universality of a given description, Applying it
to different systems

® Description of larger systems in term of smaller systems
(Different Level of effectiveness)

® Solving models

@ Relation of description with Previous Knowledge and
Models
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Two Paradigms for Programming

Rules —»

Data —=

Data —

Answers ——m

Classical
programming

= Answers

Machine
learning

—= Rules

® Hard problems: a lot of computational steps (time) or/and

memory

® Finite amount of resource
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Two Computations

IF B > D THEN
IF A > B THEN
PRINT C * C
ELSE
IF C > A THEN
IF D > C THEN
IF B > C THEN
PRINT B * C
ELSE
PRINT C * D
END IF
ELSE
PRINT A * B
END IF
ELSE
PRINT A * C
IF A > D THEN
PRINT A * D
ELSE

PRINT B * D
END IF

END IF
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Inverse problems and ML

Forward Problem

Prediction
— |Physical Laws | —> of
Observations

Model

Parameters

Inverse Problem

Estimation
Observations | = | Physical Laws | —> of

Parameters

® c.g. Discovery of Neptune from the perturbed trajectory of
Uranus.

e Earth density from acoustic wave

® Tomographic reconstruction, i.e CT scan
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An Inverse Problem

® Given the input x find the value of f(x) by:

f(x) = Z Jixk
k=0

® The Inverse:

1. given an output y; find the input x; such that y; = f(x1)
2. given some data {(x1,y1), (X2,¥2), ...} find the function
y = f(x), i.e. J
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Example:
m
yvi= > Juxi
k=1

Very special cases: (n = m,detJ # 0)

m

X = Z [T i

i=1

In many cases, the solution to the inverse problem is
ill-posed.

In general it is possible to define:

n m 2
L=>" (yi - ZJika> =0
i=1 k=1

seek an xj that minimizes L
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Inverse Problem And ML

® = Optimization problem
® — Representing the map with an NN

e Estimation of parameters of the model based on
observation

® Printing Vs Digit Recognition
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Inverse Problems in Physics

Knowing objects that cannot be measured directly

Infering the cause from the results

Determining physical laws and governing equations

Determining physical constants

All physics innovations are inverse problems
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Scattering And Imaging

® Unknown Object

N>

X
Transmitter

incident
field

Object

Rx of Interest

Tx

measurement
domain

scatteredy
field

® The image is reconstructed from information of scattered
waves
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Inverse Scattering Problem

® Unknown Potential, Law,

initial state
(wave packet) e
t— -00
> . ‘ final state
t— +o0

scatterers
(x#0) /
S
® The potential is determined from information such as
scattering amplitudes
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Simulations and ML

Use of computer simulations to generate samples of labeled
training data {xi,y;}

Learn fast neural network to generate the results of
simulations.

Data generation

Learn the network once
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Machine learning phases of matter!: >

® Large state space — complexity

Classification of phases

Identify phases from state

® — peural-network classification

Study of phase transitions and order parameters
Classify The Ising Phases

'nature.com/articles/nphys4035

*nature.com/articles/nphys4037
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https://www.nature.com/articles/nphys4035
https://www.nature.com/articles/nphys4037

String Theory And ML

e String Theory: First Prediction: 10d spacetime
e Don’t Worry = MY = M* x X6
® A lot of possibilities! ®

® Topology and geometry of compact dimensions (in addition
of Branes and Fluxes)

® The problem is to select a manifold necessary for
compaction of string theory so that it becomes the
standard model of elementary particles

® = An inverse problem
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2-D Manifolds

e B DB

g(X)=0 g(¥)=1 9(x) > 1

x(E)=2  x(&)=0 x(£) <0

Spherical Ricci-Flat Hyperbolic
+ curvature 0 curvature — curvature
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String Phenomenology to CY

e Classical vacuum of string theory on X! preserves

N = 1SUSY in M*

¢ Killing Spinor = Covariant constant spinor = Ricci-Flat
internal X% space

® The gauge group/particle content of low energy theory
depends on the topology of compact space

® Direct Problem: Find the resulting 4D theory from a given
topology?
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Calabi—Yau manifolds

rf:lTorustz.S'lel_

d=2K3 4-torus: T* = (51)4

d = 3 CY3: Unclassified, billions known




Complete Intersection Calabi-Yau

CY as Intersections of hypersurfaces in P"

Configuration matrices:

ny | qf qz e qi
1
no [ q g5 ... q
K — ' '2 '2 ' 2
N [al o2 ... o8 K

Classifying the CICY matrices, checking redundancies and
equivalences

Obtained ~ 10'° configuration
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Train The CYs

® Training data: {kj,h(k;)} from very lengthy calculations
® Being Similar to SM as a label:

SM non-SM
1 -1 -1 1 2 2 -1 -1 0 0
0 -2 0 1 1 0 1 0 -1 0
I S TR B Rt e 2 2 a1 2
K=1"1 9 1 o 2|7 K=1"1 9 o0 o -1 |70
01 0 0 -1 10 1 1 -1
1 0 1 -2 0 1 -1 0 -1 1

® Design the network = Probe the landscape, More than
90% accuracy

e Refer to HRD problem
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The CY Landscape: from Geometry to Physics, to ML

Lecture Notes in Mathematics 2293

Yang-Hui He

The Calabi—Yau
Landscape

@ Springer
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Machine-Learning the Classification of Spacetimes

® petrov-Penrose Classification of
Spacetimes
Tg = Capeak®mPkm?, W) = Copeqk®1Pkem?
Ty = Capegk®mPmC1d U3 = Copeak®1PmC1d

Uy = Copegm*1Pme1d

Vo — 420, + 622 Wy — 42205 + 220, = 0

1
Petrov type | Multiplicities
1 (1111

I—D

1] ——N——0

® NNs: {Wg, Uy, Us, U3, Uy} —
Types

Fi0. 1. Flow diagram for determining the Petrov type
from the ¥s.

tarXiv:2201.01644 , Y. He, J. Manuel P. Ipifia
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https://arxiv.org/abs/2201.01644

Particle Physics

Experiments such as CMS and ATLAS at the LHC
generate petabytes of data per year.

Features x; in detector labeled y; by particles or
interactions = classification

Signal and Background discrimination

Jet Classification (heavy and light quarks, gluons, and W
Z, and H bosons)

Fast Simulation: SM and BSM leads to which results
Search for anomalies: classify SM and BSM events

Neutrino physics, phase transitions of quantum
chromodynamics, ...

Many other applications': 2

LarXiv:1807.02876
2arXiv:1806.11484

)
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https://arxiv.org/abs/1807.02876
https://arxiv.org/abs/1806.11484

Cosmology And Astrophysics

® Gravitational lens finding
® Simulation

® [nverse problem: Interferometer Gravitational-Wave
Observatory (LIGO) time series to the underlying
waveform from a gravitational wave

® Data recorded on detectors — gravitational wave

® Reconstruct the image of a black hole from data from array
of telescopes (EHT)

® (lassification of galaxies

. e 1

tarXiv:2203.08056
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https://arxiv.org/abs/2203.08056

Other Applications

® Other examples of inverse problems in physics
® [nverse of boundary value problem

® Landscape of Theories e.g. Conformal Bootstrap, Space of
Integrable Theories

e Quantum State Tomography': Reconstruct the density
matrix of an unknown quantum state, through
experimentally available measurements

® AdS/CFT correspondence: determining gravity theory, the

inside (bulk), from the quantum field theory living on the
boundary

tarxiv:1703.05334
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https://arxiv.org/abs/1703.05334

Wave Function of a Quantum Many-Body System

The Quantum state

)= > W(s1esn) fs) o fsw)

S1,,SN

The nonlinear function 1 transforms the input
(s1,,snx) = (0,0,1,0,1,) into output ¥(0,0,1,0,1,).

Minimize the energy function

(¢ [H])
CRRY

E=

The ground state

26/31



The NN Quantum States

Neural networks as a method of constructing quantum
states

Represent the nonlinear state function as |¥) by

¥(q) = g™ (9(L> g® (9@) ey (9(1>q)))

An Energy Function
= Optimization = 6*
= Wy«(q)
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RBM and The Wave Function'

® Restricted Boltzmann Machines:

® The Neural-Network Quantum States:

U (S; W) = Z e 205 22 bihi+35 Wijhio!
{hi}
® Minimize the Energy Function

EOW) = (Ym|H M) / (¥m | W)

® Exponential to polynomial complexity
!'Science 355, 602 (2017) 8.
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https://www.science.org/doi/10.1126/science.aag2302

DBM and The Wave Function'

® Deep Boltzmann Machines:

Uy (O’Z) = Z exp |:Z aiO'iZ —+ ZO’iZWijhj -‘erjhj + Zhjdkwj{k + Zb{(dk
i j ik k

{h,d} i ij

'Nat Commun 9, 5322 (2018).
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https://doi.org/10.1038/s41467-018-07520-3

Some Refrences

@ A high-bias, low-variance introduction to Machine Learning
for physicists: arXiv:1803.08823

® Introduction to the core concepts and tools of machine
learning

® Python Jupyter notebooks

@ Deep Learning and Physics; Akinori Tanaka, Akio Tomiya,
and Koij Hashimoto,

springer.com/book/10.1007/978-981-33-6108-9
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https://arxiv.org/abs/1803.08823
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://link.springer.com/book/10.1007/978-981-33-6108-9

Summery

® Technique and methods of ML are well adapted to physics

® Using ML in physics is rapidly expanding

® The range of problems vary from classical physics, to
quantum theory, particle physics and string theory
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