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Puysics HeLe ML

® Concepts and techniques used in ML origins in physics

¢ Optimization techniques: Improving algorithms and
proposing different loss functions

® Modeling and NN architecture: energy-based models
inspired by statistical physics

® Theory of deep learning: Physics May help understanding
the theory of deep learning
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IMmPrOVING GD ALGORITHM

Drawback of GD:

Large training inputs

— long time and resource
® ] ocal minimum

® Sensitive to choices of the learning rates, initial conditions,
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StocHAsTIC GD witH MOMENTUM

® stochastic — mini-batch:

* Adding Momentum

w— w = uw—nVC
00 =0+
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OtHER Cost FUuNnCTIONS

® Energy Conserving cost functions !
¢ Inspired by Bl action

® Reaching global minimum

12201.11137 : G. B. Luca, E. Silverstein
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https://arxiv.org/abs/2201.11137

THE Ising MODEL
® Statistical model of Magnet materials

® The partition function
g
e With Hamiltonian

H(U) = — ZL‘]’O}'O’]' — ,UJZh]’O']’,
(i) i

¢ The probability of an configuration

—BH(o)
Po) =,

Zg
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HorrieLD NETWORK

® Hopfield model (Network)
H(U) = — Z]ijaiaj — U ZI’Z]U]',
i j
® Physics: Temperature 3, magnetic field and couplings —

(M)
o ML: The inverse
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BorrzMANN M ACHINES
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BorrzMANN M ACHINES

Boltzmann Machines:

Input v; — P (v;) = exp [-& (v;)]

Energy Function & (v;):

& (Ui) = Zﬂﬂ]i + Z ?/UZ']'UZ'U]'
i

i#j

Visible v; and hidden variables h;
Optimization = Probabilities
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REesTrRICTED AND DEEP BOLTZMANN M ACHINES
® Restricted Boltzmann Machines

& (vishi) =) (aw; + bily) + ) wyoihy

i if

® Deep Boltzmann Machines

N-1
£=> wonV + 3" {Z wi(].k)hlﬁ")h}"“)]
z

k=1 ij
V; hz( 1] h!( N-1) hi( N)
e0e %
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i i i
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TENSOR NETWORKS
¢ Four particle state
(W) = yal) ) ) |1)
® Represent the state instead by

) rn = BunAmiiAnia|i) ) 1K) 1)

A |I>
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TeNsOR NETWORK STATES

¢ relationship between the restricted Boltzmann machines
and the tensor networks!

'arXiv:1701.04831, J. Chen, S. Cheng, H. Xie, L. Wang, T. Xiang
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https://arxiv.org/abs/1701.04831

TeENSOR NETWORKS FOR M ACHINE LEARNING

Both NN and TT could represent quantum states

Using a tensor network directly as machine learning model
architecture

Supervised Learning with Quantum-Inspired Tensor
Networks !

e Tensor networks for unsupervised machine learning

larXiv:1605.05775 , E. M. Stoudenmire, D. J. Schwab

*arXiv:2106.12974 , J. Liu, S. Li, ]. Zhang, P. Zhang
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https://arxiv.org/abs/1605.05775
https://arxiv.org/abs/2106.12974

A THEORY FOR DEEP LEARNING

® Relation of microscopic aspect and macroscopic
techniques?

¢ Coarse Graining:

=@ ouTPuT

“Dog”
INPUT:
Image
broken
into pixels  Layer 1 L2 L3 L4 LS
Pixel Edges Combinations Features Combinations
values identified  of edges identified of features
detected identified identified
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Tue N — oo LMt

® Main hyper-parameters Of NN = N, And L

® The output distribution converge to multivariate Gaussian
distributions for finite L infinite width limit N, — oo !

® No Learning! ®
 The NN is no longer deep £ — 0

¢ Large depth L and large width N , with their ratio L/N
held fixed

¢ finite-width-corrected nearly-Gaussian model

larXiv:1711.00165, J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J.

Pennington, J. Sohl-Dickstein
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https://arxiv.org/abs/1711.00165

ErrecTive FieLD THEORY APPrOACH To NNs!:2

NGP / finite NN Interacting QFT
input x external space or momentum space point
network output f7 (x) interacting field ¢a
non-Gaussianities interactions
non-Gaussian coefficients coupling strengths
log probability effective action Sx

® Perturbative methods in QFT (Expansion in %)

® Interactions as perturbations around free asymptotic states

larXiv:2106.10165 , D. A. Roberts, S. Yaida, B. Hanin, CUP

2arXiv:2008.08601 , J. Halverson, A. Maiti, K. Stoner
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https://arxiv.org/abs/2106.10165
https://arxiv.org/abs/2008.08601

RG anp DNN

® The RG

W e
. N ':Jl

® Real space renormalization

Ja
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RG o NN
® RGinIsing

H[{vi}] = ZKZUZ Z Kijviv;
® The Effective (coarse-grained) Hamiltonian

HEC [{1}] = ZKZ — Y Kyhily
j

® Variational RG:

B[} = Try, e’ A({oh{m})-H({o})

® Interactions between the physical and coarse-grained
degrees of freedom
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RG anp RBM

® Choosing (Optimizing) the parameters A such that the
partition functions be same

Z = Try, e~ H{w}] _ Try, o—H({hi})
® The same procedure of training RBM with !
{UZ {h } Z b; h + Z Z7zwz]h + Z Ci0;

A= {b]-,wl-]-,cl-}
T ({vi}, {h}) = —E({o:}, {Iy}) + H[{o}}]

'arXiv:1410.3831, , P. Mehta, D. J. Schwab
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https://arxiv.org/abs/1410.3831

PCA meets RG !

Diagonalizing the covariance matrix

Eliminate the modes that have small variance.

Restricting to modes with less than some cutoff
® Project onto just a few degrees of freedom

® Momentum space renormalization

larXiv:1610.09733 S. Bradde, W. Bialek
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https://arxiv.org/abs/1610.09733

TNs, NNs, QFIT, ENTANGLEMENT AND (GEOMETRY

Tensor Network representation of states

Tensor Networks and Renormalization: MERA

Geometry of the network = AdS/CFT correspondence
QMBS = QFT
Relation of NN with entanglement and geometry?
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ADS/CFT AnD DEEP LEARNING!

® Energy scale in QFT ~ Depth in NNs

® Energy scale in QFT ~ Depth in AdS space
e AdS/CFT to a DBM:

woivwviwy
;'é“ 'é"é‘;':
@...

larXiv:1903.04951, K. Hashimoto
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https://arxiv.org/abs/1903.04951

ADS/CFT AND DEeP LEARNING

AdS/CFT Deep Boltzmann machine
Bulk coordinate z Hidden layer label k
QFT source J(x) Input value v;
Bulk field ¢(x, z) Hidden variables hi(k)
QFT generating function Z[J] | Probability distribution P (v;)
Bulk action S[¢) Energy function &£ (v,-, hi(k))

ZQFT U ] = exXp ( grav1ty Z eXp Uh ))
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Prysics-INFORMED MACHINE LEARNING!

® Include prior scientific knowledge into our machine
learning

Training a physics-informed
neural network
physical
quantities 2
du d“u
dx’dx2’™"
coordinates l

Compare to Compute derivatives and
training data minimise underlying

equation residual

"nature.com/articles/s42254-021-00314-5
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https://www.nature.com/articles/s42254-021-00314-5

Paysics-INFORMED M ACHINE LEARNING

¢ Add the known differential equations directly into the loss
function when training the neural network

= mlnf Z UNN x;, — Utrue (-xi))z

Z([ g+ (x],9)>2

e Using NN for solving differential equation'

! doi.org/10.1016/j.jcp.2018.10.045
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https://doi.org/10.1016/j.jcp.2018.10.045

QuaNTUM MACHINE LEARNING

¢ Quantum computers can help improve ML algorithms

¢ Quantum networks replace classic neural networks

¢ Using quantum devices like neural networks

¢ adapt the physical control parameters, such as an
electromagnetic field strength or a laser pulse frequency, to

solve a problem

&=

Quou\H)rvx
Device

>
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SUMMERY

Physics can help developments of ML

Making better optimization algorithms

Model selection and NN architecture

Making process in understanding the theory beyond Deep
learning
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