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Paysics aAND ML

Physics and ML both deal with modeling and prediction

Techniques and methods of machine learning are
applicable to a large number of physics problems

Physics could contribute to ML research

In there more fundamental connection?
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Paysics-INFORMATION-ML

Physics Leami:u)

Morimti)r

Information is the bridge between Physics and ML
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PHYsics AND INFORMATION

® Maximum Entropy Principle approch to Statistical Physics
1,2

® The relation of Shanon Entropy:

S = —Zpilogpi

¢ and the Gibbs Entropy:

S = kB Zpilogpi

Information Theory and Statistical Mechanics, E. T. Jaynes, Phys. Rev.
106, 620 -1957
*Information Theory and Statistical Mechanics II, E. T. Jaynes, Phys. Rev.

108, 171 — 1957
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https://journals.aps.org/pr/abstract/10.1103/PhysRev.106.620
https://journals.aps.org/pr/abstract/10.1103/PhysRev.106.620
https://journals.aps.org/pr/abstract/10.1103/PhysRev.108.171
https://journals.aps.org/pr/abstract/10.1103/PhysRev.108.171

MaxENT PRINCIPLE

¢ Shanon Entropy: quantifies the statistical uncertainty
about the value of x, from a probability distribution p(x).

® Principle of Maximum Entropy: A physical system should
be described by the probability distribution with the
largest entropy subject to certain constraints

® optimization problem:

£ = =S+ A (s~ [ i010)

+ (1 - /dxp(x)>

® ie. Average energy = Boltzmann distribution
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FROM STATISTICAL MECHANICS TO MACHINE LEARNING

® Bayesian inference provides a set of principles and
procedures for learning from data and for describing
uncertainty

¢ Learning that an unlikely event has occurred is more
informative than learning that a likely event has occurred

® The goal of the training procedure is to use the available
training data to fit parameters of probability distribution.

¢ The relative entropy?

Dii(P|Q) = D P(x log< ((J;))>

xeX
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WHAT 1S A PHYSICAL LAW?

The Whole Process:

@ Information from nature

@ (Complicated ) process of analysis by the physicist
(intelligence)

@ Making Models
@ Prediction of new Phenomena

In Brief: Data=-Training (intelligence) = Predictions

All Physics Problem are inverse problem

How data is presented to make scientific explorations?

The philosophy of science?
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STATISTIC AND SCIENCE PROGRESS

® Does the statistic based on Frequentist or Bayesian
approach?

® Probability and The Logic of Science !

'E. T. Jaynes, Probability Theory: The Logic of Science. Cambridge

University Press, 2003
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SomMEe FUNDAMENTAL CHALLENGES IN ML

@ Overfitting and Underfitting
@ Bias-Variance Dilemma
@ No Free Lunch Theorems
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TraE PrEDICTION IN ML

e New Data {Xyew, Ynew

Ynew :f(xnew)?

¢ Training and Test Split:

Data

o

Training Test

e The value of the loss function in unseen data?

e The model is selected based on this behavior?
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THE UNDERFITTING AND OVERFITTING
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THE UNDERFITTING AND OVERFITTING

10 -~
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THE UNDERFITTING AND OVERFITTING
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THE UNDERFITTING AND OVERFITTING
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BIAS—VARIANCE
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BIAS—VARIANCE
High Variance

Low Variance

Low Bias

High Bias
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BIAS—VARIANCE PROBLEM

® The Bias: error that comes from the potentially wrong
prior assumptions in the model

® The variance : error that comes from the model’s
sensitivity to small variations

® Not possible to simultaneously decrease bias and variance
error beyond training set
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BIAS—VARIANCE PROBLEM

¢ In complex model with over-fitting: high variance, The
model memorizes,

e Fails to correctly apply new real-world data (False
learning)

¢ Every machine learning problem has a different point at
which the bias-variance tradeoff is optimized

® There is no super-algorithm that can solve every machine
learning problem better than every other algorithm.
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Tue No Free Lunca THEOREM! 2

® There is no such a thing as a free lunch

® Average over all possible machine-learning problems, all
learning algorithms are equivalent

® no machine learning algorithm is universally any better
than any other.

¢ the kinds of probability distributions we encounter in
real-world applications

* we must design our machine learning algorithms to
perform well on a specific task

1W01pert, D.H., Macready, W.G. (1997)

2Wolper’c, David (1996), , Neural Computation, pp. 1341-1390
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https://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
http://www.zabaras.com/Courses/BayesianComputing/Papers/lack_of_a_priori_distinctions_wolpert.pdf

No rrREE LuNcH THEOREM

¢ Every machine learning algorithm makes prior
assumptions about the relationship between the features
and target variables for a machine learning problem.

® An algorithm may perform very well for one problem, but
that gives us no reason to believe it will do just as well on a
different problem where the same assumptions may not
work.

® we cannot apply a conclusion about a particular set of
observations to a more general set of observations
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THE PROBLEM OF INDUCTION1

Does we deduce scientific theories by Induction?

The black swans case

® We cannot apply a conclusion about a particular set of
observations to a more general set of observations

knowledge is limited to the information (memorizing)?

laws of physics = uniformity of nature?

!The Stanford Encyclopedia of Philosophy, The Problem of Induction,

(2018).
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https://plato.stanford.edu/entries/induction-problem/
https://plato.stanford.edu/entries/induction-problem/

WHay Prysics AND Al work?!: 2

® Wigner: “The unreasonable effectiveness of mathematics in
the natural sciences”?

® Why physicist’s crude experience leads to such accurate
and predictive theories?

® The No Free Lunch Theorem: When you average over all
possible machine-learning problems, all learning
algorithms are equivalent

® Sparsity in Physics: Locality, Symmetry, ...
® Sparsity in AI?

larXiv:2104.00008 , D. A. Roberts

*arXiv:1608.08225 , H. W. Lin , M. Tegmark , D. Rolnick
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https://arxiv.org/abs/2104.00008
https://arxiv.org/abs/1608.08225

ErrecTIVE DESCRIPTION

No free lunch— Sparsity

Locality, Symmetry, Typicality , = Effective theories

Effective description of the world

No fundamental theory = all theories must be effective
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ML ADDED TO PHYSICS

¢ Traditionally, scientific research has revolved around
theory and experiment

® Refines it using experimental data and analyses it to make
new predictions.

¢ Data-driven approaches to science
® An existing theory is not required (No explicit rules)

® Machine learning algorithm can be used to analyses a
scientific problem using data alone.

24/31



THE END OF THEORY?

® The End of Theory: The Data Deluge Makes the Scientific
Method Obsolete!

1 https://www.wired.com/2008/06/pb-theory/, Chris Anderson
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https://www.wired.com/2008/06/pb-theory/

LEARN THE NATURE?

® Do we always need the explicit form of laws?
® From our elementary school physics:

® Almost all skill are Learning type
® Why not science?
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LearN THE Laws?

Why The Laws?

There is a vast landscape of equally consistent theories

The Space of Laws parameterized by Coupling constants,
masses, ...

Universe learn its laws in a multiverse space?’

larXiv:2104.03902, S. Alexander, W. J. Cunningham, J. Lanier, L. Smolin, S.

Stanojevic, M. W. Toomey, D. Wecker
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arxiv.org/abs/2104.03902

MAcCHINE LEARNING THE DATA IN PUBLICATION

HEP—-TH"

ArXiv: A lot of information about physics

Harness the information for Physics itself?

Investigate the language of theoretical physics
Idea generating machines

’holography’+ ’quantum’ + ’string’ + ’ads’ = ’extremal-black-hole’

’black-hole’ + ’holographic’ = ’thermodynamics’

'arXiv:1807.00735, Y. He, V. Jejjala, B. D. Nelson
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https://arxiv.org/abs/1807.00735

THE LAWS AND BrAINS

How Do we understand the laws?
® conciseness being?
Is the black box of brain works like NN?

Does the brains trained over the evolution process?
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Puaysics ML Grours

@ Institute for Artificial Intelligence and Fundamental
Interactions (IAIFI)!

® collaboration of both physics and Al researchers

@ The Center for Brains, Minds & Machines (CBMM)?
® Max Tegmark groub °

! iaifi.org
2cbmm.mit.edu
3super—ms.mi’c.edu /physics-ai.html
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https://iaifi.org/
https://cbmm.mit.edu/
http://super-ms.mit.edu/physics-ai.html

CoNcCLUSION

® Many concepts in ML and physics are similar

¢ Using ML for a large variety of problems in physics

® Physics could help developments in ML

® Possible new directions in ML /Physics

® ML-Physics is still in its infancy

¢ ML in future seems to be in future an important ingredient
of physical theories like algebra and differential equations
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