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Background & Motivation



Liouville Theory

Liouville Theory first appeared as a conformal anomaly in Polyakov's attempt
to understand non-critical bosonic strings. Since then, Liouville theory has
found various applications in both physics and mathematics.

From the point of view of low-dimensional quantum gravity and holography,
there has been a resurgence of interest in Liouville Theory due to its close
connection with JT gravity and AdSs/CFT2.[krasnov 00 a&b/Krasnov '01/Krasnov '02/Krasnov,

Schlenker / Takhtajan, Teo '06/ Mertens, Turiaci '21]

This theory admits two dimensional surfaces of constant negative curvature
(possibly with sources) as its classical solutions: Let X be a compact closed
Riemann surface of genus g > 1. In the absence of sources, complete
conformal metrics ds®> = e")(“’a)|a’u|2 on X are classical fields of this theory, and
the Liouville equation —2e~?9;0,¢ = —1 is the corresponding Euler-Lagrange
equation.

According to the uniformization theorem, the hyperbolic metric on X is the
unique classical solution of the theory and one can consider this classical
solution as the critical point of a certain functional defined on the space of all
smooth conformal metrics on X. This functional is called the Liouville action
functional and its critical value — the classical Liouville action.



Liouville Theory & Global Coordinate

The definition of the classical Liouville action is a non-trivial problem: Since
¢(u, ) is not a globally defined function on X, but rather a logarithm of the
conformal factor of the metric, the “kinetic term” \i)uu\zdu A dii does not yield
a (1,1)-form on X and, therefore, can not be integrated over X.

Takhtajan and Zograf solved this problem by using global coordinates, provided
by different uniformizations of X: Instead of defining the Liouville action in
terms of classical fields on X, one chooses to define this action in terms of
Liouville field on a planar covering of X.

Such a planar covering can be found uniquely given a “marking” of X and are
in one-to-one correspondence with complex projective structures on X. More
precisely, such a geometric structure on X can be viewed as a
(PSL(2, C), CP!)-structure defined via an open cover {U,}.ca of X with
holomorphic charts f, : U, — CP' such that the transition functions are given
by the restrictions of Mdbius transformations.

The fact that classical Liouville action depends on complex projective
structures is a manifestation of so-called conformal anomaly.



Fuchsian Uniformization

Compact Riemann surfaces admit several different descriptions: By classical
uniformization theorem, every hyperbolic Riemann surface X (i.e. x(X) < 0)
can be realized as a quotient of H = D by a Fuchsian group

I C PSL(2,R) = PSU(1,1):

-\ ) =0 o\
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Let au,...,ag, B1,..., Bg be the generators of I 2 71(X); A Fuchsian group
with a distinguished system of generators will be called marked. These
generators correspond to a canonical homotopy basis of X and marked
Fuchsian groups «— Riemann surfaces with homotopy marking.



Schottky Uniformization

When X is a compact Riemann surface with g > 1 handles and no boundaries,
the most convenient way to realize X is as a quotient space Q(X)/X. Here, the
Schottky group X (of rank g > 1) is a subgroup of PSL(2,C) that is freely
generated by g loxodromic elements and the region of discontinuity Q(X) is a
subregion of € on which ¥ acts discontinuously. A Schottky group ¥ with a
distinguished system of generators Li, ..., L, will be called marked.

Consider a Marked Fuchsian group I and let A/ be the smallest normal
subgroup in I that contains au, ..., ag. Then, there exists a Schottky group
> >~ /N such that H/I = X = Q/Y. This Schottky group is marked by
generators Ly, ..., L, corresponding to the cosets /1N, ..., BgN.

A marked Schottky group is most conveniently described by its fundamental
region: It is a subset D C Q, such that no two distinct interior points of D are
¥ -equivalent, and every point of Q is X-equivalent to some point of D. More
specifically, D can be viewed as the exterior of 2g non-intersecting circles
G,...,Cg, C,...,Clin C, such that ¢/ = —L;(C) and the region exterior to
C; is mapped to the interior of C/.



Schottky Uniformization

Intuitively, we can obtain a Schottky representation of X by cutting it along g
disjoint closed loops such that it stays in one piece and becomes a sphere with
2g holes, flatten it onto the complex plane, and build the Schottky group from
the Mobius maps that glue the surface back together along its g seams.




Schottky space G,

Each generator L; has a standard form

L;(W)—a,' _ ‘W—a,'

L,‘(W)*b,‘ - IW*b,’7
and is completely characterized by its attractive and repulsive fixed points, a;
and b;, as well as the value of its multiplier \;.

By conjugation in PSL(2,C), one can always put a1 =0, by = oo, and a, = 1.
A Schottky group for which these conditions hold is called normalized and
space of all marked normalized Schottky groups will be called the Schottky
space &, of genus g. The Schottky space &, can be viewed as an
intermediate moduli space —i.e. T = S5 — M.

Let X be a marked normalized Schottky group of genus g > 1. The map
Y (a3,...,35, b0, ... bg, A1y .., Ng) € C¥ 3

establishes a one-to-one correspondence between the Schottky space &, and a
connected subset of C3¢~2 and can be viewed as defining a coordinate basis in
a neighborhood of the origin.

From now on, we will denote the coordinates of &, with t1, ..., t3g—3.



Classical Liouville Action for X

Let ¥ be a marked normalized Schottky group of rank g > 1 which uniformizes
the closed Riemann surface X and let e*"")|dw|? be the pull-back of the
hyperbolic metric on X by the covering map 7x : Q — X.

According to [Zograf, Takhtajan '88 b/ Takhtajan, Teo '03], the classical
Liouville action for such a compact Riemann surface is defined as

Stel = [[ (0wl + ) w+—2

where the 1-form GL;1(4,0) is given by

1 712 2 F Yy
OL;1(¢)= (90—§|0g|Lk| — log [/ ) (L’ dw Iy = dw |

This classical Liouville action is independent of the choice of D and determines

a smooth function on &,.



Complex Geometry of &,

In [Zograf, Takhtajan '88 b], the authors used a mathematically rigorous
procedure for varying S[p] with respect to the moduli and were able to prove

the following two results:

1. Let {t1,..., tsg—3} denote the coordinates on G, and let dty,...,dtsz—3
be the corresponding cotangent vector fields. If 9 denotes the (1,0)
component of de Rham differential on &, the classical Liouville action
satisfies S[p] = 2R where

33

R=—-nx Z C,‘d.l’,'7
i=1

is a (1,0)-form on &, and ¢;s are the so-called accessory parameters
associated with (Fushian) uniformization of Q = H/N/.

2. If @ and 9 denote the (1,0) and (0,1) components of de Rham differential
on &g, we have:

89S = —2v/—1 wwe.

Moreover, It was proved by Krasnov and Takhtajan-Teo that Liouville action
satisfies holographic principle: it is a regularized limit of the hyperbolic volume
of a 3D handlebody which has X as its conformal boundary.



Classical Correlation Functions of
Branch Point Vertex Operators




Classical Correlation Functions of Branch Point Vertex Operators

Once the classical Liouville action is defined, the quantity exp(—S[¢]) will play
the role of partition function of classical Liouville thery on X. [Takhtajan '93/ Takhtajan ‘94

a&b/ Takhtajan '96/ Takhtajan, Teo '06]

However, objects of fundamental importance in classical LFT are given by the
correlation functions of vertex operators Vo (x) = e*?®). These are primary
operators of conformal dimension A = a(2 — «).

In the classical limit, correlation functions (Va, (x1) - Va,(x»)) are dominated
by the extremum of the classical Liouville action with insertion of sources
>0, aip(xi). This then introduces d-function type singularities on the right
hand side of Liouville equation:

0uOap = %e‘p = T('Z ;i d(u— x).

Form this point of view, the classical correlation functions (Va,(x1) - -+ Va,(xn))
are given by exp(—.7,[¢]) where .Zo[¢] denotes the classical Liouville action
on a Riemann surface with conical singularities x; of angles 27(1 — «;). When
a;p=1— - (2 < m; < o0) the problem of calculating (Va, (x1) - - - Ve, (X))
reduces to the study of classical Liouville action .#m[¢] on a (possibly

punctured) Riemann orbisurface O (see also [park, Takhtajan, Teo '15]). o



Schottky Uniformization of O

For our purposes, it is sufficient to view the orbifold Riemann surface O as a
underlying Riemann surface X together with n weighted “marked points”

X1, ..., Xn; the weights my, ..., m, will be called the orders of isotropy and the
Riemann orbisurface O is said to have the signature (g, n; my, ..., my).

Now, consider the covering map 7y : Q — X. By inserting singular points of
the same order at the locations corresponding to all pre-images w; € w{l(x;) of
each marked point x; (i =1,...,n), we get a planar orbifold Riemann surface

A A A
Q which covers O —i.e. O = Q/%. We will also denote the restriction of €2 to

A
the fundamental domain with D.
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Generalized Schottky Space

Let us define a generalized Schottky space &, ,(m) as a holomorphic fibaration

g

71 Sg,n(m) — S, with fibers that are configuration spaces of n labeled points

(with orders my, ..., my). In the neighborhood of the origin, coordinates
ti, ..., tsg—34n of Sg ,(m) are given by
(33,...,ag,bg,...,bg,)\l,...,)\g,W1,..‘,W,7) € 33,

A
If x(0) =x(X)=>(1- mil) < 0, H is the universal cover of O and Q itself
will admit H as its universal cover; we denote this covering by J : H — Q. The

A
covering map J effectively describes the Fuchsian uniformization of 2 and its
behavior near marked points will play an essential role in our study.

In order to define the appropriate classical Liouville action for O, we have to

A
integrate on D instead of on D. Therefore, one needs to regularize the area
integral which diverges due to the asymptotic behavior of ¢ near marked points
A

w; € D.
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Regularized Liouville Action

We do this in the same way as in genus 0 case: [zogrf, Takhtajan '01]

Smle] = Sm(D; wi, ..., wa) = Sp,,[0] + g Z]{c GLk_l(go)

where

S5pl] =

i ([t st 2 f ()

_27TZ < —) Ioge+27rnp(|oge+2log|Ioge|)> .

m;j
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Anomaly of Sp,[¢]

The above regularization procedure, provides a sort of anomaly for the Liouville
action which means that Sm[¢] depends on the choice of representatives in

> - {wi,...,w,} and no longer determines a function on the Schottky space
Sg,n(m). In particular, we have:

S,,,(fj; Wi, .o, Lewgy oo, Wy) = Sm(Ds v, ..., wy) = TAi log |L2(W,~)|2.

14



Geometric Meaning of S.,[¢]

The geometric meaning of the above statement is that regularized Liouville
action Sm[¢] determines a Hermitian metric e>"[¥!/™ in the holomorphic Q-line
bundle £ := L3 @ --- ® L2 over G ,(m) where L; denotes the i-th relative

cotangent line bundle. [B.T. Naseh Allameh 23]

Then, the following two statement are true: [B.T., Naseh Allameh 23]

1. In a local holomorphic frame, canonical connection on the Hermitian
Q-line bundle (£, es’"M/”) is given by
1 3g—3+n
—0Sm = -2 Rl o
2. The first Chern form of the Hermitian Q-line bundle (£, e5”[“°]/”) is given
by

1
(L, ey = WP

15



Kahler Potentials for TZ Metrics

Let £; be the i-th tautological line bundle on &, ,(m) and consider the

covering map J : H — 6 Since J o Bx = Lk o J, the marked points

wi, ..., Lgwj, ... w, correspond to the fixed points z, ..., Bz, ..., z,, and
the first coefficient in the expansion of J(z) at the equivalent fixed point Skz; is
L}, (w;) ). Correspondingly, hj = | J”|? gets replaced by hi|Lj(w;)|>.
Geometrically, this means that the quantities h; determine Hermitian metrics in
the holomorphic line bundles £; for all i =1,...,n.

Then, the foIIowing two statement are true: [Park, Takhtajan, Teo '15/ Takhtajan, Zograf '18/ B.T.,

Naseh, Allameh '23]

1. In a local holomorphic frame canonical connection on the Hermitian line
bundle (£j, hi) is given by

) 3g—3+n
ol = — ijat.
og hi = — Z d; j dt;
Jj=1
2. The first Chern form of the Hermitian line bundle (£;, h;) is given by
a(Li, hi) = %wer"z,; (mi < o0) and ci(Li, hi) = %wcruzsf’,- (mi = o0).
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Kahler Potentials for TZ Metrics

Now, let us define H := I'I,LlhiA". Clearly, H defines a Hermitian metric in the
holomorphic Q-line bundle £ := £ ® --- ® L2 over G4 ,(m).
Then, the previous statements about connections and Chern forms on line
bundles £; can be written as: [Park, Takhtajan, Teo '15/ Takhtajan, Zograf '18/ B.T., Naseh, Allameh 23]
1. In a local holomorphic frame, the canonical connection on the Hermitian
Q-line bundle (£, H) is given by

3g 3+n n

a|ogH— — Z ZA d;jdt;.

%,_/
d;

2. The first Chern form of the Q-Hermitian line bundle (£, H) is given by

a(L,H) = 3 Wiy + 5 ZA miwiy ;.
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Main Results




Classical Liouville Action on &, ,(m)

Combining the previous discussions, we conclude that the combination

S m[p] := Sm|[¢p] — 7 log H determines a smooth real-valued function on
Sg.n(m)! This means that exp(—-m[¢]) gives the correct classical contribution
to the correlation function of heavy Liouville vertex operators.

Theorem (B.T., Naseh, Allameh)
Let O and O be the (1,0) and (0,1) components of the de Rham differential on

Sg,n(m). The following statements hold:
1. The function % m[$] on &, »(m) satisfies 0. m[p] = 2% where

3g—3+n
R = Z (—7TC,'+d,‘)dt,',

i=1
is a (1,0)-form on G4 ,(m).

2. The function —%m[¢] on &, »(m) is a potential for the special
combination of Weil-Petersson and Takhtajan-Zograf metrics:

—80.Sm[p] = 2v/—1 <wwp = 4— s — Z A m,w%”z,i> .
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Questions?



Thank you!
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