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Background & Motivation



Liouville Theory

Liouville Theory first appeared as a conformal anomaly in Polyakov’s attempt

to understand non-critical bosonic strings. Since then, Liouville theory has

found various applications in both physics and mathematics.

From the point of view of low-dimensional quantum gravity and holography,

there has been a resurgence of interest in Liouville Theory due to its close

connection with JT gravity and AdS3/CFT2.[Krasnov ’00 a&b/Krasnov ’01/Krasnov ’02/Krasnov,

Schlenker / Takhtajan, Teo ’06/ Mertens, Turiaci ’21]

This theory admits two dimensional surfaces of constant negative curvature

(possibly with sources) as its classical solutions: Let X be a compact closed

Riemann surface of genus g > 1. In the absence of sources, complete

conformal metrics ds2 = e�(u,ū)|du|2 on X are classical fields of this theory, and

the Liouville equation �2e��@ū@u� = �1 is the corresponding Euler-Lagrange

equation.

According to the uniformization theorem, the hyperbolic metric on X is the

unique classical solution of the theory and one can consider this classical

solution as the critical point of a certain functional defined on the space of all

smooth conformal metrics on X . This functional is called the Liouville action

functional and its critical value — the classical Liouville action.
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Liouville Theory & Global Coordinate

The definition of the classical Liouville action is a non-trivial problem: Since

�(u, ū) is not a globally defined function on X , but rather a logarithm of the

conformal factor of the metric, the “kinetic term” |@u�|2du ^ dū does not yield

a (1,1)-form on X and, therefore, can not be integrated over X .

Takhtajan and Zograf solved this problem by using global coordinates, provided

by di↵erent uniformizations of X : Instead of defining the Liouville action in

terms of classical fields on X , one chooses to define this action in terms of

Liouville field on a planar covering of X .

Such a planar covering can be found uniquely given a “marking” of X and are

in one-to-one correspondence with complex projective structures on X . More

precisely, such a geometric structure on X can be viewed as a

(PSL(2,C),CP1)-structure defined via an open cover {Ua}a2A of X with

holomorphic charts fa : Ua ! CP
1 such that the transition functions are given

by the restrictions of Möbius transformations.

The fact that classical Liouville action depends on complex projective

structures is a manifestation of so-called conformal anomaly.
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Fuchsian Uniformization

Compact Riemann surfaces admit several di↵erent descriptions: By classical

uniformization theorem, every hyperbolic Riemann surface X (i.e. �(X ) < 0)

can be realized as a quotient of H ⇠= D by a Fuchsian group

� ⇢ PSL(2,R) ⇠= PSU(1, 1):

Let ↵1, . . . ,↵g ,�1, . . . ,�g be the generators of � ⇠= ⇡1(X ); A Fuchsian group

with a distinguished system of generators will be called marked. These

generators correspond to a canonical homotopy basis of X and marked

Fuchsian groups  ! Riemann surfaces with homotopy marking.
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Schottky Uniformization

When X is a compact Riemann surface with g > 1 handles and no boundaries,

the most convenient way to realize X is as a quotient space ⌦(⌃)/⌃. Here, the

Schottky group ⌃ (of rank g > 1) is a subgroup of PSL(2,C) that is freely

generated by g loxodromic elements and the region of discontinuity ⌦(⌃) is a

subregion of Ĉ on which ⌃ acts discontinuously. A Schottky group ⌃ with a

distinguished system of generators L1, . . . , Lg will be called marked.

Consider a Marked Fuchsian group � and let N be the smallest normal

subgroup in � that contains ↵1, . . . ,↵g . Then, there exists a Schottky group

⌃ ⇠= �/N such that H/� ⇠= X ⇠= ⌦/⌃. This Schottky group is marked by

generators L1, . . . , Lg corresponding to the cosets �1N , . . . ,�gN .

A marked Schottky group is most conveniently described by its fundamental

region: It is a subset D ( ⌦, such that no two distinct interior points of D are

⌃-equivalent, and every point of ⌦ is ⌃-equivalent to some point of D. More

specifically, D can be viewed as the exterior of 2g non-intersecting circles

C1, . . . ,Cg ,C 0
1, . . . ,C

0
g in Ĉ, such that C 0

i = �Li (Ci ) and the region exterior to

Ci is mapped to the interior of C 0
i .
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Schottky Uniformization

Intuitively, we can obtain a Schottky representation of X by cutting it along g

disjoint closed loops such that it stays in one piece and becomes a sphere with

2g holes, flatten it onto the complex plane, and build the Schottky group from

the Möbius maps that glue the surface back together along its g seams.
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Schottky space Sg

Each generator Li has a standard form

Li (w)� ai
Li (w)� bi

= �i
w � ai
w � bi

,

and is completely characterized by its attractive and repulsive fixed points, ai
and bi , as well as the value of its multiplier �i .

By conjugation in PSL(2,C), one can always put a1 = 0, b1 =1, and a2 = 1.

A Schottky group for which these conditions hold is called normalized and

space of all marked normalized Schottky groups will be called the Schottky

space Sg of genus g . The Schottky space Sg can be viewed as an

intermediate moduli space — i.e. Tg ! Sg !Mg .

Let ⌃ be a marked normalized Schottky group of genus g > 1. The map

⌃ 7! (a3, . . . , ag , b2, . . . , bg ,�1, . . . ,�g ) 2 C
3g�3

establishes a one-to-one correspondence between the Schottky space Sg and a

connected subset of C3g�3 and can be viewed as defining a coordinate basis in

a neighborhood of the origin.

From now on, we will denote the coordinates of Sg with t1, . . . , t3g�3.
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Classical Liouville Action for X

Let ⌃ be a marked normalized Schottky group of rank g > 1 which uniformizes

the closed Riemann surface X and let e'(w,w̄)|dw |2 be the pull-back of the

hyperbolic metric on X by the covering map ⇡⌃ : ⌦! X .

According to [Zograf, Takhtajan ’88 b/ Takhtajan, Teo ’03], the classical

Liouville action for such a compact Riemann surface is defined as

S ['] =

ZZ

D
(|@w'|2 + e') d2w +

p
�1
2

gX

k=2

I

Ck

✓L�1

k
('),

where the 1-form ✓L�1

k
(') is given by

✓L�1

k
(') =

✓
'� 1

2
log |L0

k |2 � log |lk |2
◆ 

L00
k

L0
k

dw � L00
k

L0
k

dw̄

!
.

This classical Liouville action is independent of the choice of D and determines

a smooth function on Sg .
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Complex Geometry of Sg

In [Zograf, Takhtajan ’88 b], the authors used a mathematically rigorous

procedure for varying S ['] with respect to the moduli and were able to prove

the following two results:

1. Let {t1, . . . , t3g�3} denote the coordinates on Sg and let dt1 , . . . , dt3g�3

be the corresponding cotangent vector fields. If @ denotes the (1,0)

component of de Rham di↵erential on Sg , the classical Liouville action

satisfies @S ['] = 2R where

R = �⇡
3g�3X

i=1

ci dti ,

is a (1,0)-form on Sg and ci s are the so-called accessory parameters

associated with (Fushian) uniformization of ⌦ ⇠= H/N .

2. If @ and @̄ denote the (1,0) and (0,1) components of de Rham di↵erential

on Sg , we have:

@̄@S = �2
p
�1!WP .

Moreover, It was proved by Krasnov and Takhtajan-Teo that Liouville action

satisfies holographic principle: it is a regularized limit of the hyperbolic volume

of a 3D handlebody which has X as its conformal boundary.
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Classical Correlation Functions of
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Classical Correlation Functions of Branch Point Vertex Operators

Once the classical Liouville action is defined, the quantity exp(�S [']) will play
the role of partition function of classical Liouville thery on X . [Takhtajan ’93/ Takhtajan ’94

a&b/ Takhtajan ’96/ Takhtajan, Teo ’06]

However, objects of fundamental importance in classical LFT are given by the

correlation functions of vertex operators V↵(x) = e↵'(x). These are primary

operators of conformal dimension � = ↵(2� ↵).

In the classical limit, correlation functions hV↵1
(x1) · · ·V↵n (xn)i are dominated

by the extremum of the classical Liouville action with insertion of sourcesPn
i=1

↵i'(xi ). This then introduces �-function type singularities on the right

hand side of Liouville equation:

@u@ū' =
1
2
e' � ⇡

X
↵i �(u � xi ).

Form this point of view, the classical correlation functions hV↵1
(x1) · · ·V↵n (xn)i

are given by exp(�S↵[']) where S↵['] denotes the classical Liouville action

on a Riemann surface with conical singularities xi of angles 2⇡(1� ↵i ). When

↵i = 1� 1

mi
(2  mi  1) the problem of calculating hV↵1

(x1) · · ·V↵n (xn)i
reduces to the study of classical Liouville action Sm['] on a (possibly

punctured) Riemann orbisurface O (see also [Park, Takhtajan, Teo ’15]).
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Schottky Uniformization of O

For our purposes, it is su�cient to view the orbifold Riemann surface O as a

underlying Riemann surface X together with n weighted “marked points”

x1, . . . , xn; the weights m1, . . . ,mn will be called the orders of isotropy and the

Riemann orbisurface O is said to have the signature (g , n;m1, . . . ,mn).

Now, consider the covering map ⇡⌃ : ⌦! X . By inserting singular points of

the same order at the locations corresponding to all pre-images wj 2 ⇡�1

⌃
(xi ) of

each marked point xi (i = 1, . . . , n), we get a planar orbifold Riemann surface
f
⌦ which covers O — i.e. O ⇠=

f
⌦/⌃. We will also denote the restriction of

f
⌦ to

the fundamental domain with
f
D.
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Generalized Schottky Space

Let us define a generalized Schottky space Sg,n(m) as a holomorphic fibaration

| : Sg,n(m)! Sg with fibers that are configuration spaces of n labeled points

(with orders m1, . . . ,mn). In the neighborhood of the origin, coordinates

t1, . . . , t3g�3+n of Sg,n(m) are given by

(a3, . . . , ag , b2, . . . , bg ,�1, . . . ,�g ,w1, . . . ,wn) 2 C
3g�3+n.

If �(O) = �(X )�
P

(1� 1

mi
) < 0, H is the universal cover of O and

f
⌦ itself

will admit H as its universal cover; we denote this covering by J : H!
f
⌦. The

covering map J e↵ectively describes the Fuchsian uniformization of
f
⌦ and its

behavior near marked points will play an essential role in our study.

In order to define the appropriate classical Liouville action for O, we have to

integrate on
f
D instead of on D. Therefore, one needs to regularize the area

integral which diverges due to the asymptotic behavior of ' near marked points

wi 2
f
D.
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Regularized Liouville Action

We do this in the same way as in genus 0 case: [Zograf, Takhtajan ’01]

Sm['] = Sm(D;w1, . . . ,wn) = SDreg
['] +

p
�1
2

gX

k=2

I

Ck

✓L�1

k
('),

where

SDreg
['] =

lim
✏!0+

 ZZ

D✏

(|@w'|2 + e2') d2w +

p
�1
2

neX

j=1

✓
1� 1

mj

◆I

C✏
j

'

✓
dw̄

w̄ � w̄j
� dw

w � wj

◆

�2⇡
neX

j=1

✓
1� 1

mj

◆
2

log ✏+ 2⇡np
�
log ✏+ 2 log | log ✏|

�
!
.
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Anomaly of Sm[']

The above regularization procedure, provides a sort of anomaly for the Liouville

action which means that Sm['] depends on the choice of representatives in

⌃ · {w1, . . . ,wn} and no longer determines a function on the Schottky space

Sg,n(m). In particular, we have:

Sm(D̃;w1, . . . , Lkwi , . . . ,wn)� Sm(D;w1, . . . ,wn) = ⇡�i log |L0
k(wi )|2.
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Geometric Meaning of Sm[']

The geometric meaning of the above statement is that regularized Liouville

action Sm['] determines a Hermitian metric eSm [']/⇡ in the holomorphic Q-line

bundle L := L�1

1
⌦ · · ·⌦ L�n

n over Sg,n(m) where Li denotes the i-th relative

cotangent line bundle. [B.T., Naseh,Allameh ’23]

Then, the following two statement are true: [B.T., Naseh,Allameh ’23]

1. In a local holomorphic frame, canonical connection on the Hermitian

Q-line bundle (L, eSm [']/⇡) is given by

1
⇡
@Sm = �2

3g�3+nX

i=1

ci dti .

2. The first Chern form of the Hermitian Q-line bundle (L, eSm [']/⇡) is given

by

c1(L, eSm [']/⇡) =
1
⇡2

!WP .
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Kähler Potentials for TZ Metrics

Let Li be the i-th tautological line bundle on Sg,n(m) and consider the

covering map J : H!
f
⌦. Since J � �k = Lk � J, the marked points

w1, . . . , Lkwi , . . . ,wn correspond to the fixed points z1, . . . ,�kzi , . . . , zn, and

the first coe�cient in the expansion of J(z) at the equivalent fixed point �kzi is

L0
k(wi )J

(i)
1
. Correspondingly, hi = |J(i)

1
|2 gets replaced by hi |L0

k(wi )|2.
Geometrically, this means that the quantities hi determine Hermitian metrics in

the holomorphic line bundles Li for all i = 1, . . . , n.

Then, the following two statement are true: [Park, Takhtajan, Teo ’15/ Takhtajan, Zograf ’18/ B.T.,

Naseh, Allameh ’23]

1. In a local holomorphic frame canonical connection on the Hermitian line

bundle (Li , hi ) is given by

@ log hi =
�2
⇡

3g�3+nX

j=1

di,j dtj .

2. The first Chern form of the Hermitian line bundle (Li , hi ) is given by

c1(Li , hi ) =
mi

2⇡
!ell
TZ ,i (mi <1) and c1(Li , hi ) =

4
3
!cusp
TZ ,i (mi =1).
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Kähler Potentials for TZ Metrics

Now, let us define H := ⇧n
i=1h

�i
i . Clearly, H defines a Hermitian metric in the

holomorphic Q-line bundle L := L�1

1
⌦ · · ·⌦ L�n

n over Sg,n(m).

Then, the previous statements about connections and Chern forms on line

bundles Li can be written as: [Park, Takhtajan, Teo ’15/ Takhtajan, Zograf ’18/ B.T., Naseh, Allameh ’23]

1. In a local holomorphic frame, the canonical connection on the Hermitian

Q-line bundle (L,H) is given by

@ logH =
�2
⇡

3g�3+nX

j=1

nX

i=1

�idi,j

| {z }
dj

dtj .

2. The first Chern form of the Q-Hermitian line bundle (L,H) is given by

c1(L,H) =
4
3
!cusp
TZ +

1
2⇡

neX

i=1

�imi!
ell
TZ ,i .
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Main Results



Classical Liouville Action on Sg ,n(m)

Combining the previous discussions, we conclude that the combination

Sm[�] := Sm[�]� ⇡ logH determines a smooth real-valued function on

Sg,n(m)! This means that exp(�Sm[�]) gives the correct classical contribution

to the correlation function of heavy Liouville vertex operators.

Theorem (B.T., Naseh, Allameh)

Let @ and @̄ be the (1,0) and (0,1) components of the de Rham di↵erential on

Sg,n(m). The following statements hold:

1. The function Sm[�] on Sg,n(m) satisfies @Sm[�] = 2R where

R =
3g�3+nX

i=1

(�⇡ci + di ) dti ,

is a (1,0)-form on Sg,n(m).

2. The function �Sm[�] on Sg,n(m) is a potential for the special

combination of Weil-Petersson and Takhtajan-Zograf metrics:

�@̄@Sm[�] = 2
p
�1
 
!WP �

4⇡2

3
!cusp
TZ �

⇡
2

neX

i=1

�imi!
ell
TZ ,i

!
.
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Questions?
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Thank you!
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