Carrollian Field Theory

Mojtaba Najafizadeh

Department of Physics, Faculty of Science, Ferdowsi University of Mashhad Mashhad, Iran

PhD defense

Wednesday, Esfand 01, 1403

Mojtaba Najafizadeh

Carrollian Field Theory

Based on:

Hamid Afshar, Xavier Bekaert, Mojtaba Najafizadeh "Classification of conformal Carroll algebras" JHEP 12 (2024) 148, arXiv:2409.19953

Along with:

Konstantinos Koutrolikos, Mojtaba Najafizadeh "Super-Carrollian and super-Galilean field theories", Phys. Rev. D **108**, 125014 (2023), arXiv:2309.16786

Mojtaba Najafizadeh "Carroll-Schrödinger Equation" Accepted in Scientific Reports (2025), arXiv:2403.11212

Outline:

Motivation

Carrollian field theory

Carroll algebra

Carrollian conformal algebra

Conformal extensions of the Carroll algebra

Infinite-dimensional conformal extensions

Two-point functions

Three-point functions

Outcomes

Mojtaba Najafizadeh

Motivation

Two limits:

Flat space holography:

Conformal Carroll field theory might be dual to quantum gravity in asymptotically flat spacetime [S. Pasterski (2021), L. Donnay (2023), ...]

Cosmology and dark energy:

Carroll symmetry might be relevant for de Sitter cosmology and inflation [J. de Boer, J. Hartong (2022), ...]

Carroll gravity:

M. Henneaux (1979), N. A. Obers (2022), D. Grumiller (2023), ...

String theory:

Carroll symmetries arise in the tensionless limit of string theory [A. Bagchi (2016), \dots]

Carroll symmetry in hydrodynamics:

L. Ciambelli, C. Marteau (2018), ...

Quantum mechanics:

M. Najafizadeh (2024), \ldots

Carrollian Field Theory

Let us consider the Lagrangian of a relativistic massless scalar field

$$\mathcal{L} = -\frac{1}{2} \,\partial_\mu \phi \,\partial^\mu \,\phi$$

Let us consider the Lagrangian of a relativistic massless scalar field

$$\mathcal{L} = -\frac{1}{2} \,\partial_\mu \phi \,\partial^\mu \,\phi$$

including the speed of light c

$$\mathcal{L} = \frac{1}{2c^2} \left(\partial_t \phi\right)^2 - \frac{1}{2} \left(\partial_i \phi\right)^2$$

Let us consider the Lagrangian of a relativistic massless scalar field

$$\mathcal{L} = -\frac{1}{2} \,\partial_\mu \phi \,\partial^\mu \phi$$

including the speed of light c

$$\mathcal{L} = \frac{1}{2c^2} \left(\partial_t \phi\right)^2 - \frac{1}{2} \left(\partial_i \phi\right)^2$$

by rescaling the field $\phi \to c \phi$, one has

$$\mathcal{L} = \frac{1}{2} \left(\partial_t \phi \right)^2 - \frac{1}{2} c^2 \left(\partial_i \phi \right)^2$$

Let us consider the Lagrangian of a relativistic massless scalar field

$$\mathcal{L} = -\frac{1}{2} \,\partial_\mu \phi \,\partial^\mu \,\phi$$

including the speed of light c

$$\mathcal{L} = \frac{1}{2c^2} \left(\partial_t \phi\right)^2 - \frac{1}{2} \left(\partial_i \phi\right)^2$$

by rescaling the field $\phi \to c \phi$, one has

$$\mathcal{L} = \frac{1}{2} \left(\partial_t \phi \right)^2 - \frac{1}{2} c^2 \left(\partial_i \phi \right)^2$$

Taking the Carroll limit $c \to 0$,

Let us consider the Lagrangian of a relativistic massless scalar field

$$\mathcal{L} = -\frac{1}{2} \,\partial_\mu \phi \,\partial^\mu \,\phi$$

including the speed of light c

$$\mathcal{L} = \frac{1}{2c^2} \left(\partial_t \phi\right)^2 - \frac{1}{2} \left(\partial_i \phi\right)^2$$

by rescaling the field $\phi \to c \phi$, one has

$$\mathcal{L} = \frac{1}{2} \left(\partial_t \phi \right)^2 - \frac{1}{2} c^2 \left(\partial_i \phi \right)^2$$

Taking the Carroll limit $c \to 0$, one obtains

Electric Carroll scalar field:
$$\mathcal{L}_e = \frac{1}{2} \left(\partial_t \phi \right)^2$$

Let us consider the Lagrangian of a relativistic massless scalar field

$$\mathcal{L} = -\frac{1}{2} \,\partial_\mu \phi \,\partial^\mu \,\phi$$

including the speed of light c

$$\mathcal{L} = \frac{1}{2c^2} \left(\partial_t \phi\right)^2 - \frac{1}{2} \left(\partial_i \phi\right)^2$$

by rescaling the field $\phi \to c \phi$, one has

$$\mathcal{L} = \frac{1}{2} \left(\partial_t \phi \right)^2 - \frac{1}{2} c^2 \left(\partial_i \phi \right)^2$$

Taking the Carroll limit $c \to 0$, one obtains

Electric Carroll scalar field:
$$\mathcal{L}_e = \frac{1}{2} \left(\partial_t \phi \right)^2$$

• mass term can be added

Let us consider the Lagrangian of a relativistic massless scalar field

$$\mathcal{L} = -\frac{1}{2} \,\partial_\mu \phi \,\partial^\mu \,\phi$$

including the speed of light c

$$\mathcal{L} = \frac{1}{2c^2} \left(\partial_t \phi\right)^2 - \frac{1}{2} \left(\partial_i \phi\right)^2$$

by rescaling the field $\phi \to c \phi$, one has

$$\mathcal{L} = \frac{1}{2} \left(\partial_t \phi \right)^2 - \frac{1}{2} c^2 \left(\partial_i \phi \right)^2$$

Taking the Carroll limit $c \to 0$, one obtains

Electric Carroll scalar field:
$$\mathcal{L}_e = \frac{1}{2} \left(\partial_t \phi \right)^2$$

- mass term can be added
- J. de Boer (2022), E. A. Bergshoef (2022)

Mojtaba Najafizadeh

Let us consider again the Lagrangian of a relativistic massless scalar field

$$\mathcal{L} = -\frac{1}{2} \,\partial_\mu \phi \,\partial^\mu \,\phi$$

Let us consider again the Lagrangian of a relativistic massless scalar field

$${\cal L} = - \, {1 \over 2} \, \partial_\mu \phi \, \partial^\mu \, \phi$$

including the speed of light c

$$\mathcal{L} = \frac{1}{2c^2} \left(\partial_t \phi\right)^2 - \frac{1}{2} \left(\partial_i \phi\right)^2 \tag{1}$$

Let us consider again the Lagrangian of a relativistic massless scalar field

$$\mathcal{L} = -\frac{1}{2} \, \partial_\mu \phi \, \partial^\mu \, \phi$$

including the speed of light c

$$\mathcal{L} = \frac{1}{2c^2} \left(\partial_t \phi\right)^2 - \frac{1}{2} \left(\partial_i \phi\right)^2 \tag{1}$$

This Lagrangian has also an alternative by adding a Lagrange multiplier χ :

$$\mathcal{L}' = -\frac{1}{2}c^2\chi^2 + \chi\partial_t\phi - \frac{1}{2}(\partial_i\phi)^2 \qquad -c^2\chi + \partial_t\phi = 0$$
(2)

Let us consider again the Lagrangian of a relativistic massless scalar field

$$\mathcal{L} = -\frac{1}{2} \,\partial_\mu \phi \,\partial^\mu \,\phi$$

including the speed of light c

$$\mathcal{L} = \frac{1}{2c^2} \left(\partial_t \phi\right)^2 - \frac{1}{2} \left(\partial_i \phi\right)^2 \tag{1}$$

This Lagrangian has also an alternative by adding a Lagrange multiplier χ :

$$\mathcal{L}' = -\frac{1}{2}c^2\chi^2 + \chi\partial_t\phi - \frac{1}{2}(\partial_i\phi)^2 \qquad -c^2\chi + \partial_t\phi = 0$$
(2)

Taking the Carroll limit $c \to 0$,

Let us consider again the Lagrangian of a relativistic massless scalar field

$${\cal L} = - \, {1 \over 2} \, \partial_\mu \phi \, \partial^\mu \, \phi$$

including the speed of light c

$$\mathcal{L} = \frac{1}{2c^2} \left(\partial_t \phi\right)^2 - \frac{1}{2} \left(\partial_i \phi\right)^2 \tag{1}$$

This Lagrangian has also an alternative by adding a Lagrange multiplier χ :

$$\mathcal{L}' = -\frac{1}{2}c^2\chi^2 + \chi\,\partial_t\phi - \frac{1}{2}(\partial_i\phi)^2 \qquad -c^2\chi + \partial_t\phi = 0 \tag{2}$$

Taking the Carroll limit $c \to 0$, one obtains

Magnetic Carroll scalar field: $\mathcal{L}_m = \chi \partial_t \phi - \frac{1}{2} (\partial_i \phi)^2$

Let us consider again the Lagrangian of a relativistic massless scalar field

$${\cal L} = - \, {1 \over 2} \, \partial_\mu \phi \, \partial^\mu \, \phi$$

including the speed of light c

$$\mathcal{L} = \frac{1}{2c^2} \left(\partial_t \phi\right)^2 - \frac{1}{2} \left(\partial_i \phi\right)^2 \tag{1}$$

This Lagrangian has also an alternative by adding a Lagrange multiplier χ :

$$\mathcal{L}' = -\frac{1}{2}c^2\chi^2 + \chi\,\partial_t\phi - \frac{1}{2}(\partial_i\phi)^2 \qquad -c^2\chi + \partial_t\phi = 0 \tag{2}$$

Taking the Carroll limit $c \to 0$, one obtains

Magnetic Carroll scalar field: $\mathcal{L}_m = \chi \partial_t \phi - \frac{1}{2} (\partial_i \phi)^2$

• mass term can be added as a tachyon

Let us consider again the Lagrangian of a relativistic massless scalar field

$$\mathcal{L} = -\frac{1}{2} \, \partial_\mu \phi \, \partial^\mu \, \phi$$

including the speed of light c

$$\mathcal{L} = \frac{1}{2c^2} \left(\partial_t \phi\right)^2 - \frac{1}{2} \left(\partial_i \phi\right)^2 \tag{1}$$

This Lagrangian has also an alternative by adding a Lagrange multiplier χ :

$$\mathcal{L}' = -\frac{1}{2}c^2\chi^2 + \chi\,\partial_t\phi - \frac{1}{2}(\partial_i\phi)^2 \qquad -c^2\chi + \partial_t\phi = 0 \tag{2}$$

Taking the Carroll limit $c \to 0$, one obtains

Magnetic Carroll scalar field: $\mathcal{L}_m = \chi \partial_t \phi - \frac{1}{2} (\partial_i \phi)^2$

- mass term can be added as a tachyon
- J. de Boer (2022), E. A. Bergshoef (2022)

Mojtaba Najafizadeh

Carroll Fermions and Supersymmetry

Konstantinos Koutrolikos, Mojtaba Najafizadeh "Super-Carrollian and super-Galilean field theories", Phys. Rev. D **108**, 125014 (2023), arXiv:2309.16786 Let us consider the Lagrangian density of a massless Dirac field including \boldsymbol{c}

$$\mathcal{L} = -\bar{\Psi}\left(\gamma^{\mu}\partial_{\mu}\right)\Psi = -\bar{\Psi}\left(\frac{1}{c}\gamma^{0}\partial_{t} + \gamma^{i}\partial_{i}\right)\Psi$$

Through a Carrollian limit, we found two types of Lagrangians for Carroll fermions:

electric Carroll Dirac:
$$\mathcal{L}_e = -\bar{\psi}\gamma^0\partial_t\psi$$

magnetic Carroll Dirac: $\mathcal{L}_m = -\left(\bar{\psi}\gamma^i\partial_i\psi + \bar{\eta}\gamma^0\partial_t\psi + \bar{\psi}\gamma^0\partial_t\eta\right)$

- These Lagrangians are invariant under the Carroll boost transformations.
- Carroll fermions can be of **Dirac**, **Majorana**, or **Weyl** spinors

Super-electric Carroll theory

We introduce the super-electric Carroll action by:

$$S_{eC}^{SUSY} = \frac{1}{2} \int dt \, d^3x \left\{ \left(\partial_t \phi_R \right)^2 + \left(\partial_t \phi_I \right)^2 + F_R^2 + F_I^2 - \bar{\psi} \, \gamma^0 \partial_t \, \psi \right\}$$

and find that the action is invariant under the Super-electric Carroll transformations

$$\begin{split} \delta\phi_{R} &= \bar{\epsilon}\,\psi \\ \delta\phi_{I} &= \bar{\epsilon}\,i\,\gamma^{5}\,\psi \\ \delta F_{R} &= -\,\bar{\epsilon}\,\gamma^{0}\,\partial_{t}\,\psi \\ \delta F_{I} &= -\,\bar{\epsilon}\,i\,\gamma^{5}\,\gamma^{0}\,\partial_{t}\,\psi \\ \delta\psi &= \gamma^{0}\partial_{t}\,(\phi_{R} + i\,\gamma^{5}\,\phi_{I})\,\epsilon - (F_{R} + i\,\gamma^{5}\,F_{I})\,\epsilon \end{split}$$

We show that these transformations close off-shell for every field

$$\left[\,\delta_1\,,\,\delta_2\,\right] = 2\left(\bar{\epsilon}_2\,\gamma^0\,\epsilon_1\right)\partial_t$$

We introduce the super-magnetic Carroll action by:

$$\mathbf{S}_{\mathrm{mC}}^{\mathrm{SUSY}} = \int dt \, d^3x \left\{ \chi_1 \, \partial_t \, \phi_R \, + \, \chi_2 \, \partial_t \, \phi_I \, + \, F_R \, G_R \, + \, F_I \, G_I \, + \, \frac{1}{2} \, \bar{\lambda} \, \gamma^0 \, \psi \, - \, \frac{1}{2} \, \bar{\psi} \, \gamma^0 \, \lambda \right\}$$

and find that the action is invariant under the Super-electric Carroll transformations

$$\begin{split} \delta\phi_{R} &= \bar{\epsilon}\psi & \delta\phi_{I} = \bar{\epsilon}i\gamma^{5}\psi \\ \delta\chi_{1} &= \bar{\epsilon}\lambda & \delta\chi_{2} = \bar{\epsilon}i\gamma^{5}\lambda \\ \delta F_{R} &= -\bar{\epsilon}\gamma^{0}\partial_{t}\psi & \delta F_{I} = \bar{\epsilon}i\gamma^{0}\gamma^{5}\partial_{t}\psi \\ \delta G_{R} &= -\bar{\epsilon}\gamma^{0}\lambda & \delta G_{I} = \bar{\epsilon}i\gamma^{0}\gamma^{5}\lambda \\ \delta\psi &= \gamma^{0}\partial_{t}(\phi_{R} + i\gamma^{5}\phi_{I})\epsilon - (F_{R} + i\gamma^{5}F_{I})\epsilon \\ \delta\lambda &= \gamma^{0}\partial_{t}(\chi_{1} + i\gamma^{5}\chi_{2})\epsilon - \partial_{t}(G_{R} + i\gamma^{5}G_{I})\epsilon \end{split}$$

again these transformations close off-shell for every field

$$\left[\,\delta_1\,,\,\delta_2\,\right] = 2\left(\bar{\epsilon}_2\,\gamma^0\,\epsilon_1\right)\partial_t$$

We also derived Galilei fermions and generalized them to Supersymmetry

Carroll-Schrödinger Equation

Mojtaba Najafizadeh "Carroll-Schrödinger Equation" Accepted in Scientific Reports (2025), arXiv:2403.11212 Beginning with the tachyon complex scalar field theory, we derived the **Carroll-Schrödinger** field theory through a limiting process:

In 1+1 dimensions		In $1+d$ dimensions
$\left(i\hbarc\partial_x + \frac{\hbar^2}{2mc^2}\partial_t^2\right)\psi = 0$		$\left(i\hbar c\nabla_x + \frac{\hbar^2}{2mc^2}\partial_t^2\right)\psi = 0$ where $\nabla_x = \frac{1}{\sqrt{x^2}}\left(x\cdot\partial + \frac{d-1}{2}\right)$
$[H, D] = H$ $[D, B] = B$ $[H, \mathbb{K}] = B$ $[H, B] = M$	$[P, D] = 2P$ $[D, \mathbb{K}] = 2\mathbb{K}$ $[P, \mathbb{K}] = D$ $[P, B] = H$?

Canonical quantization is performed, and the two-point function is calculated

Recall the Poincaré algebra

$$[P_{\mu}, P_{\nu}] = 0$$
$$[J_{\mu\nu}, P_{\rho}] = \eta_{\mu\rho} P_{\nu} - \eta_{\nu\rho} P_{\mu}$$
$$J_{\mu\nu}, J_{\rho\sigma}] = \eta_{\mu\rho} J_{\nu\sigma} - \eta_{\mu\sigma} J_{\nu\rho} - \eta_{\nu\rho} J_{\mu\sigma} + \eta_{\nu\sigma} J_{\mu\rho}$$

in which

$$P_{\mu} := \partial_{\mu} \qquad \text{Translation generators} \begin{cases} P_0 & \text{Hamiltonian} \\ P_i & \text{Momentum} \end{cases}$$
$$J_{\mu\nu} := x_{\mu} \partial_{\nu} - x_{\nu} \partial_{\mu} \qquad \text{Lorentz generators} \begin{cases} J_{i0} & \text{Boosts} \\ J_{ij} & \text{Rotations} \end{cases}$$

are ten Poincaré generators in 4d spacetime.

Poincare generators, P_0 , P_i , J_{i0} , J_{ij} , including c (i.e. $x^{\mu} = (ct, x^i)$) become:

$$P_0 = \frac{1}{c} \partial_t \qquad P_i = \partial_i \qquad J_{i0} = x_i \frac{1}{c} \partial_t + c t \partial_i \qquad J_{ij} = x_i \partial_j - x_j \partial_i$$

Poincare generators, P_0 , P_i , J_{i0} , J_{ij} , including c (i.e. $x^{\mu} = (ct, x^i)$) become:

$$P_0 = \frac{1}{c} \partial_t \qquad P_i = \partial_i \qquad J_{i0} = x_i \frac{1}{c} \partial_t + c t \partial_i \qquad J_{ij} = x_i \partial_j - x_j \partial_i$$

Rescaling the generators, one gets

$$c P_0 \rightarrow H = \partial_t \qquad c J_{i0} \rightarrow B_i = x_i \partial_t + c^2 t \partial_i$$

Poincare generators, P_0 , P_i , J_{i0} , J_{ij} , including c (i.e. $x^{\mu} = (ct, x^i)$) become:

$$P_0 = \frac{1}{c} \partial_t \qquad P_i = \partial_i \qquad J_{i0} = x_i \frac{1}{c} \partial_t + c t \partial_i \qquad J_{ij} = x_i \partial_j - x_j \partial_i$$

Rescaling the generators, one gets

$$c P_0 \rightarrow H = \partial_t \qquad c J_{i0} \rightarrow B_i = x_i \partial_t + c^2 t \partial_i$$

Taking the Carroll limit $c \to 0$, one obtains the **Carroll generators**:

$$H = \partial_t$$
 $P_i = \partial_i$ $B_i = x_i \partial_t$ $J_{ij} = x_i \partial_j - x_j \partial_i$

Poincare generators, P_0 , P_i , J_{i0} , J_{ij} , including c (i.e. $x^{\mu} = (ct, x^i)$) become:

$$P_0 = \frac{1}{c} \partial_t \qquad P_i = \partial_i \qquad J_{i0} = x_i \frac{1}{c} \partial_t + c t \partial_i \qquad J_{ij} = x_i \partial_j - x_j \partial_i$$

Rescaling the generators, one gets

$$c P_0 \rightarrow H = \partial_t \qquad c J_{i0} \rightarrow B_i = x_i \,\partial_t + c^2 t \,\partial_i$$

Taking the Carroll limit $c \to 0$, one obtains the **Carroll generators**:

$$H = \partial_t$$
 $P_i = \partial_i$ $B_i = x_i \partial_t$ $J_{ij} = x_i \partial_j - x_j \partial_i$

satisfying the **Carroll algebra**:

$$[P_i, B_j] = \delta_{ij}H$$

$$[J_{ij}, P_k] = \delta_{ik}P_j - \delta_{jk}P_i$$

$$[J_{ij}, B_k] = \delta_{ik}B_j - \delta_{jk}B_i$$

$$[J_{ij}, J_{kl}] = \delta_{ik}J_{jl} - \delta_{jk}J_{il} + \delta_{jl}J_{ik} - \delta_{il}J_{jk}$$

Carrollian Conformal Algebra

Carrollian Conformal Algebra

Generators of the relativistic conformal algebra, i.e. the dilatation D and special conformal transformations (SCT) K_{μ} , are given by:

$$D = x^{\mu} \partial_{\mu} = t \partial_t + x^i \partial_i , \qquad \qquad K_{\mu} = 2 x_{\mu} x^{\nu} \partial_{\nu} - x^{\nu} x_{\nu} \partial_{\mu} ,$$

where the critical exponent z (the coefficient of $t\partial_t$) is z = 1.
Carrollian Conformal Algebra

Generators of the relativistic conformal algebra, i.e. the dilatation D and special conformal transformations (SCT) K_{μ} , are given by:

$$D = x^{\mu} \partial_{\mu} = t \partial_t + x^i \partial_i, \qquad \qquad K_{\mu} = 2 x_{\mu} x^{\nu} \partial_{\nu} - x^{\nu} x_{\nu} \partial_{\mu},$$

where the critical exponent z (the coefficient of $t\partial_t$) is z = 1. Similarly, one can consider components of the conformal algebra including c. By rescaling generators and taking the limit $(c \to 0)$ one gets:

$$D = t\partial_t + x^i\partial_i, \qquad K = x^2\partial_t, \qquad K_i = 2x_i(t\partial_t + x^j\partial_j) - x^2\partial_i$$

Carrollian Conformal Algebra

Generators of the relativistic conformal algebra, i.e. the dilatation D and special conformal transformations (SCT) K_{μ} , are given by:

$$D = x^{\mu} \partial_{\mu} = t \partial_t + x^i \partial_i, \qquad \qquad K_{\mu} = 2 x_{\mu} x^{\nu} \partial_{\nu} - x^{\nu} x_{\nu} \partial_{\mu},$$

where the critical exponent z (the coefficient of $t\partial_t$) is z = 1. Similarly, one can consider components of the conformal algebra including c. By rescaling generators and taking the limit $(c \to 0)$ one gets:

$$D = t\partial_t + x^i\partial_i, \qquad K = x^2\partial_t, \qquad K_i = 2x_i(t\partial_t + x^j\partial_j) - x^2\partial_i$$

satisfying the "Carrollian conformal algebra" (CCA):

$$\begin{split} & [P_i, B_j] = \delta_{ij} H, & [D, H] = -H, & [K, P_i] = -2B_i, \\ & [P_i, J_{jk}] = \delta_{i[j} P_{k]}, & [D, P_i] = -P_i, & [K_i, H] = -2B_i, \\ & [B_i, J_{jk}] = \delta_{i[j} B_{k]}, & [D, K] = K, & [K_i, P_j] = -2\delta_{ij} D - 2J_{ij}, \\ & [J_{ij}, J_{kl}] = \delta_{[i[k} J_{l]j]}, & [D, K_i] = K_i, & [K_i, B_j] = -\delta_{ij} K, \\ & & [K_i, J_{jk}] = \delta_{i[j} K_{k]}. \end{split}$$

Carrollian Conformal Algebra

Generators of the relativistic conformal algebra, i.e. the dilatation D and special conformal transformations (SCT) K_{μ} , are given by:

$$D = x^{\mu}\partial_{\mu} = t\partial_t + x^i\partial_i, \qquad \qquad K_{\mu} = 2 x_{\mu} x^{\nu}\partial_{\nu} - x^{\nu} x_{\nu}\partial_{\mu},$$

where the critical exponent z (the coefficient of $t\partial_t$) is z = 1. Similarly, one can consider components of the conformal algebra including c. By rescaling generators and taking the limit $(c \to 0)$ one gets:

$$D = t\partial_t + x^i\partial_i, \qquad K = x^2\partial_t, \qquad K_i = 2x_i(t\partial_t + x^j\partial_j) - x^2\partial_i$$

satisfying the "Carrollian conformal algebra" (CCA):

$$\begin{split} \left[\begin{array}{ccc} \left[P_{i} \,,\, B_{j} \right] = \delta_{ij} \,H \,, & \left[\,D \,,\, H \,\right] = - \,H \,, & \left[\,K \,,\, P_{i} \,\right] = - \,2 \,B_{i} \,, \\ \left[\,P_{i} \,,\, J_{jk} \,\right] = \delta_{i[j} \,P_{k]} \,, & \left[\,D \,,\, P_{i} \,\right] = - \,P_{i} \,, & \left[\,K_{i} \,,\, H \,\right] = - \,2 \,B_{i} \,, \\ \left[\,B_{i} \,,\, J_{jk} \,\right] = \delta_{i[j} \,B_{k]} \,, & \left[\,D \,,\, K \,\right] = K \,, & \left[\,K_{i} \,,\, P_{j} \,\right] = - \,2 \,\delta_{ij} \,D - \,2 \,J_{ij} \,, \\ \left[\,J_{ij} \,,\, J_{kl} \,\right] = \delta_{[i[k} J_{l]j]} \,, & \left[\,D \,,\, K_{i} \,\right] = K_{i} \,, & \left[\,K_{i} \,,\, B_{j} \,\right] = - \,\delta_{ij} \,K \,, \\ & \left[\,K_{i} \,,\, J_{jk} \,\right] = \delta_{i[j} K_{k]} \,. \end{split}$$

Carroll algebra

Conformal extension

Mojtaba Najafizadeh

Carrollian Field Theory

We asked, are there any other conformal extensions of the Carroll algebra?

Conformal extensions of the Carroll algebra

Minimal conformal extensions of the Carroll algebra

let us consider the generators $\{D, K, K_i\}$ of the Carrollian conformal algebra with some arbitrary parameters $a, b, c, \alpha, \beta, \gamma$:

$$\begin{split} H &= \partial_t \,, \qquad P_i = \partial_i \,, \qquad B_i = x_i \,\partial_t \,, \qquad J_{ij} = x_i \,\partial_j - x_j \,\partial_i \\ D &= a \, t \partial_t + b \, x^i \partial_i \,, \qquad K = c \, x^2 \partial_t \,, \qquad K_i = 2 \, \alpha \, x_i \, t \partial_t + 2 \, \beta \, x_i \, x^j \partial_j - \gamma \, x^2 \partial_i \,. \end{split}$$

Minimal conformal extensions of the Carroll algebra

let us consider the generators $\{D, K, K_i\}$ of the Carrollian conformal algebra with some arbitrary parameters $a, b, c, \alpha, \beta, \gamma$:

$$\begin{split} H &= \partial_t , \qquad P_i = \partial_i , \qquad B_i = x_i \,\partial_t , \qquad J_{ij} = x_i \,\partial_j - x_j \,\partial_i \\ D &= a \, t \partial_t + b \, x^i \partial_i , \qquad K = c \, x^2 \partial_t , \qquad K_i = 2 \, \alpha \, x_i \, t \partial_t + 2 \, \beta \, x_i \, x^j \partial_j - \gamma \, x^2 \partial_i . \end{split}$$

Accordingly, one gets the following non-trivial commutation relations

$$\begin{split} [D, H] &= -a H, \qquad [K, K_i] = 2 x_i K (\alpha - 2\beta + \gamma), \\ [D, P_i] &= -b P_i, \qquad [K_i, H] = -2 \alpha B_i, \\ [D, B_i] &= (b - a) B_i, \qquad [K_i, P_j] = -2 \delta_{ij} (\alpha t \partial_t + \beta x^k \partial_k) - J_{ij} (\beta + \gamma) - \tilde{J}_{ij} (\beta - \gamma), \\ [D, K] &= (2b - a) K, \qquad [K_i, B_j] = -2 x_i B_j (\alpha - \beta) - \delta_{ij} \gamma x^2 \partial_t, \\ [D, K_i] &= b K_i, \qquad [K_i, J_{jk}] = \delta_{i[j} K_{k]}, \\ [K, P_i] &= -2 c B_i, \qquad [K_i, K_j] = 2 \gamma (\gamma - \beta) x^2 J_{ij}, \\ \end{split}$$
where $\tilde{J}_{ij} := x_i \partial_j + x_j \partial_i. \end{split}$

In general, one can think of the Carroll algebra as being conformally extended by adding the conformal generators (D, K, K_i) in seven different ways:

 $D, K, K_i, D-K, D-K_i, K-K_i, D-K-K_i$

However, one immediately finds that satisfying the closure of commutation relations cancels some of the mentioned cases. In addition, the type $D-K_i$, which was ruled out, can in fact be a possible type in 1 + 1 dimensions. Therefore, the five general types of conformal Carroll algebras are:

Conformal Carroll algebras	\mathbf{Symbol}	Name
Type K algebra	$\mathfrak{Kcarr}(d+1)$	temporal SCT-Carroll algebra
Type D algebras	$\mathfrak{scalcarr}_z(d+1)$	scaling Carroll algebras
Type D-K algebras	$\mathfrak{confcarr}_z(d+1)$	conformal Carroll algebras
Type D-K-K _i algebra	$\mathfrak{cca}_1(d+1)$	Carrollian conformal algebra
Type D-K _i algebra	$\mathfrak{carrsch}(1+1)$	Carroll-Schrödinger algebra

$$c \neq 0$$
 which we set $c = 1$, & $a = b = \alpha = \beta = \gamma = 0$

resulting in the generators D and K_i to be trivially realised. The generators are

$$\begin{split} H &= \partial_t \,, \qquad P_i = \partial_i \,, \qquad B_i = x_i \,\partial_t \,, \qquad J_{ij} = x_i \,\partial_j - x_j \,\partial_i \,, \\ K &= x^2 \partial_t \,, \end{split}$$

$$c \neq 0$$
 which we set $c = 1$, & $a = b = \alpha = \beta = \gamma = 0$

resulting in the generators D and K_i to be trivially realised. The generators are

$$H = \partial_t , \qquad P_i = \partial_i , \qquad B_i = x_i \partial_t , \qquad J_{ij} = x_i \partial_j - x_j \partial_i ,$$
$$K = x^2 \partial_t ,$$

satisfying the following non-zero commutation relations

$$\begin{bmatrix} P_i \,, \, B_j \,] = \delta_{ij} \, H \,, \qquad [K \,, \, P_i \,] = - 2 \, B_i \,, \\ \begin{bmatrix} P_i \,, \, J_{jk} \,] = \delta_{i[j} \, P_{k]} \,, \\ \begin{bmatrix} B_i \,, \, J_{jk} \,] = \delta_{i[j} \, B_{k]} \,, \\ \begin{bmatrix} J_{ij} \,, \, J_{kl} \,\end{bmatrix} = \delta_{[i[k} J_{l]j]} \,.$$

$$c \neq 0$$
 which we set $c = 1$, & $a = b = \alpha = \beta = \gamma = 0$

resulting in the generators D and K_i to be trivially realised. The generators are

$$\begin{split} H &= \partial_t , \qquad P_i = \partial_i , \qquad B_i = x_i \, \partial_t , \qquad J_{ij} = x_i \, \partial_j - x_j \, \partial_i , \\ K &= x^2 \partial_t , \end{split}$$

satisfying the following non-zero commutation relations

$$[P_i, B_j] = \delta_{ij} H, \qquad [K, P_i] = -2 B_i,$$

$$[P_i, J_{jk}] = \delta_{i[j} P_{k]},$$

$$[B_i, J_{jk}] = \delta_{i[j} B_{k]},$$

$$[J_{ij}, J_{kl}] = \delta_{[i[k} J_{l]j]}.$$

We called this the "temporal SCT-Carroll algebra" and denote it $\Re carr(d+1)$.

This type of algebra corresponds to the case

$$a \ or \ b \neq 0 \qquad \& \qquad c = \alpha = \beta = \gamma = 0$$

resulting in the generators K and K_i to be trivially realised. The generators are

 $H = \partial_t , \qquad P_i = \partial_i , \qquad B_i = x_i \partial_t , \qquad J_{ij} = x_i \partial_j - x_j \partial_i$ $D = a t \partial_t + b x^i \partial_i ,$

This type of algebra corresponds to the case

$$a \ or \ b \neq 0 \qquad \& \qquad c = \alpha = \beta = \gamma = 0$$

resulting in the generators K and K_i to be trivially realised. The generators are

$$\begin{split} H &= \partial_t , \qquad P_i = \partial_i , \qquad B_i = x_i \, \partial_t , \qquad J_{ij} = x_i \, \partial_j - x_j \, \partial_i \\ D &= a t \, \partial_t + b \, x^i \partial_i , \end{split}$$

satisfying the following non-zero commutation relations

$$\begin{split} \left[\begin{array}{ll} P_i \,,\, B_j \end{array} \right] &= \delta_{ij} \, H \,, & \left[\begin{array}{ll} D \,,\, H \end{array} \right] = - \, a \, H \,, \\ \left[\begin{array}{ll} P_i \,,\, J_{jk} \end{array} \right] &= \delta_{i[j} \, P_{k]} \,, & \left[\begin{array}{ll} D \,,\, P_i \end{array} \right] = - \, b \, P_i \,, \\ \left[\begin{array}{ll} B_i \,,\, J_{jk} \end{array} \right] &= \delta_{i[j} \, B_{k]} \,, & \left[\begin{array}{ll} D \,,\, B_i \end{array} \right] = (b - a) \, B_i \,, \\ \left[\begin{array}{ll} J_{ij} \,,\, J_{kl} \end{array} \right] &= \delta_{i[ik} J_{l]j]} \,, \end{split}$$

This type of algebra corresponds to the case

$$a \ or \ b \neq 0 \qquad \& \qquad c = \alpha = \beta = \gamma = 0$$

resulting in the generators K and K_i to be trivially realised. The generators are

$$\begin{split} H &= \partial_t , \qquad P_i = \partial_i , \qquad B_i = x_i \, \partial_t , \qquad J_{ij} = x_i \, \partial_j - x_j \, \partial_i \\ D &= a t \, \partial_t + b \, x^i \partial_i , \end{split}$$

satisfying the following non-zero commutation relations

$$\begin{split} \left[\begin{array}{c} P_{i} \,,\, B_{j} \end{array} \right] &= \delta_{ij} \,H \,, & \left[\begin{array}{c} D \,,\, H \end{array} \right] = - a \,H \,, \\ \left[\begin{array}{c} P_{i} \,,\, J_{jk} \end{array} \right] &= \delta_{i[j} \,P_{k]} \,, & \left[\begin{array}{c} D \,,\, P_{i} \end{array} \right] = - b \,P_{i} \,, \\ \left[\begin{array}{c} B_{i} \,,\, J_{jk} \end{array} \right] &= \delta_{i[j} \,B_{k]} \,, & \left[\begin{array}{c} D \,,\, B_{i} \end{array} \right] = (b - a) \,B_{i} \,, \\ \left[\begin{array}{c} J_{ij} \,,\, J_{kl} \end{array} \right] &= \delta_{[i[k} J_{l]j]} \,, \end{split}$$

Setting a = z and b = 1, one has $D = z t \partial_t + x^i \partial_i$, $z \in \mathbb{R}$

This type of algebra corresponds to the case

$$a \ or \ b \neq 0 \qquad \& \qquad c = \alpha = \beta = \gamma = 0$$

resulting in the generators K and K_i to be trivially realised. The generators are

$$\begin{split} H &= \partial_t , \qquad P_i = \partial_i , \qquad B_i = x_i \, \partial_t , \qquad J_{ij} = x_i \, \partial_j - x_j \, \partial_i \\ D &= a \, t \, \partial_t + b \, x^i \partial_i , \end{split}$$

satisfying the following non-zero commutation relations

$$\begin{bmatrix} P_i \,, \, B_j \, \end{bmatrix} = \delta_{ij} H \,, \qquad \begin{bmatrix} D \,, \, H \, \end{bmatrix} = -a H \,, \\ \begin{bmatrix} P_i \,, \, J_{jk} \, \end{bmatrix} = \delta_{i[j} P_{k]} \,, \qquad \begin{bmatrix} D \,, \, P_i \, \end{bmatrix} = -b P_i \,, \\ \begin{bmatrix} B_i \,, \, J_{jk} \, \end{bmatrix} = \delta_{i[j} B_{k]} \,, \qquad \begin{bmatrix} D \,, \, B_i \, \end{bmatrix} = (b-a) B_i \,, \\ \begin{bmatrix} J_{ij} \,, \, J_{kl} \, \end{bmatrix} = \delta_{[i[k} J_{l]j]} \,,$$

Setting a = z and b = 1, one has $D = z t \partial_t + x^i \partial_i$, $z \in \mathbb{R}$

We called this the "scaling Carroll algebras" and denote it $\mathfrak{scalcarr}_z(d+1)$.

$$\begin{array}{rcl} \mathfrak{scalcarr}_0(d+1) & \longrightarrow & \mathrm{spatial\ scaling\ Carroll\ algebra} \\ \mathfrak{scalcarr}_1(d+1) & \longrightarrow & \mathrm{isotropic\ scaling\ Carroll\ algebra} \\ \mathfrak{scalcarr}_\infty(d+1) & \longrightarrow & \mathrm{temporal\ scaling\ Carroll\ algebra} \end{array}$$

 $a \ or \ b \neq 0 \ (a=z,b=1) \qquad \& \qquad c \neq 0 \ (c=1) \qquad \& \qquad \alpha = \beta = \gamma = 0$

resulting in the generator K_i to be trivially realised. The generators are

$$\begin{split} H &= \partial_t \,, \qquad P_i = \partial_i \,, \qquad B_i = x_i \,\partial_t \,, \qquad J_{ij} = x_i \,\partial_j - x_j \,\partial_i \\ D &= z \,t \,\partial_t + x^i \partial_i \,, \qquad K = x^2 \partial_t \,, \end{split}$$

 $a \ or \ b \neq 0 \ (a=z,b=1) \qquad \& \qquad c \neq 0 \ (c=1) \qquad \& \qquad \alpha = \beta = \gamma = 0$

resulting in the generator K_i to be trivially realised. The generators are

$$\begin{split} H &= \partial_t , \qquad P_i = \partial_i , \qquad B_i = x_i \, \partial_t , \qquad J_{ij} = x_i \, \partial_j - x_j \, \partial_i \\ D &= z t \, \partial_t + x^i \partial_i , \qquad K = x^2 \partial_t , \end{split}$$

satisfying the following non-zero commutation relations

$$\begin{split} & [P_i, B_j] = \delta_{ij} H, & [D, H] = -z H, & [K, P_i] = -2 B_i, \\ & [P_i, J_{jk}] = \delta_{i[j} P_{k]}, & [D, P_i] = -P_i, \\ & [B_i, J_{jk}] = \delta_{i[j} B_{k]}, & [D, B_i] = (1-z) B_i, \\ & [J_{ij}, J_{kl}] = \delta_{[i[k} J_{l]j]}, & [D, K] = (2-z) K, \end{split}$$

 $a \ or \ b \neq 0 \ (a=z,b=1) \qquad \& \qquad c \neq 0 \ (c=1) \qquad \& \qquad \alpha = \beta = \gamma = 0$

resulting in the generator K_i to be trivially realised. The generators are

$$\begin{split} H &= \partial_t , \qquad P_i = \partial_i , \qquad B_i = x_i \, \partial_t , \qquad J_{ij} = x_i \, \partial_j - x_j \, \partial_i \\ D &= z t \, \partial_t + x^i \partial_i , \qquad K = x^2 \partial_t , \end{split}$$

satisfying the following non-zero commutation relations

$$\begin{split} [P_i, B_j] &= \delta_{ij} H, & [D, H] = -z H, & [K, P_i] = -2 B_i, \\ [P_i, J_{jk}] &= \delta_{i[j} P_{k]}, & [D, P_i] = -P_i, \\ [B_i, J_{jk}] &= \delta_{i[j} B_{k]}, & [D, B_i] = (1-z) B_i, \\ [J_{ij}, J_{kl}] &= \delta_{[i[k} J_{l]j]}, & [D, K] = (2-z) K, \end{split}$$

We called this the "conformal Carroll algebras of dynamical exponent z" and denote it $confcarr_z(d+1)$.

These three types of algebras can be visualized in the following figure:

$$a=b=c=\alpha=\beta=\gamma=1$$

The generators are

$$\begin{split} H &= \partial_t , \qquad P_i = \partial_i , \qquad B_i = x_i \,\partial_t , \qquad J_{ij} = x_i \,\partial_j - x_j \,\partial_i , \\ D &= t \partial_t + x^i \partial_i , \qquad K = x^2 \partial_t , \qquad K_i = 2 \, x_i \, (t \partial_t + x^j \partial_j) - x^2 \partial_i , \end{split}$$

$$a=b=c=\alpha=\beta=\gamma=1$$

The generators are

$$\begin{split} H &= \partial_t , \qquad P_i = \partial_i , \qquad B_i = x_i \, \partial_t , \qquad J_{ij} = x_i \, \partial_j - x_j \, \partial_i , \\ D &= t \partial_t + x^i \partial_i , \qquad K = x^2 \partial_t , \qquad K_i = 2 \, x_i \, (t \partial_t + x^j \partial_j) - x^2 \partial_i , \end{split}$$

satisfying the following non-zero commutation relations

$$\begin{split} & [P_i, B_j] = \delta_{ij} H, & [D, H] = -H, & [K, P_i] = -2B_i, \\ & [P_i, J_{jk}] = \delta_{i[j} P_{k]}, & [D, P_i] = -P_i, & [K_i, H] = -2B_i, \\ & [B_i, J_{jk}] = \delta_{i[j} B_{k]}, & [D, K] = K, & [K_i, P_j] = -2\delta_{ij} D - 2J_{ij}, \\ & [J_{ij}, J_{kl}] = \delta_{[i[k} J_{l]j]}, & [D, K_i] = K_i, & [K_i, B_j] = -\delta_{ij} K, \\ & [K_i, J_{jk}] = \delta_{i[j} K_{k]}. \end{split}$$

$$a=b=c=\alpha=\beta=\gamma=1$$

The generators are

$$\begin{split} H &= \partial_t , \qquad P_i = \partial_i , \qquad B_i = x_i \, \partial_t , \qquad J_{ij} = x_i \, \partial_j - x_j \, \partial_i , \\ D &= t \partial_t + x^i \partial_i , \qquad K = x^2 \partial_t , \qquad K_i = 2 \, x_i \, (t \partial_t + x^j \partial_j) - x^2 \partial_i , \end{split}$$

satisfying the following non-zero commutation relations

$$\begin{split} & [P_i, B_j] = \delta_{ij} H, & [D, H] = -H, & [K, P_i] = -2B_i, \\ & [P_i, J_{jk}] = \delta_{i[j} P_{k]}, & [D, P_i] = -P_i, & [K_i, H] = -2B_i, \\ & [B_i, J_{jk}] = \delta_{i[j} B_{k]}, & [D, K] = K, & [K_i, P_j] = -2\delta_{ij} D - 2J_{ij}, \\ & [J_{ij}, J_{kl}] = \delta_{[i[k} J_{l]j]}, & [D, K_i] = K_i, & [K_i, B_j] = -\delta_{ij} K, \\ & [K_i, J_{jk}] = \delta_{i[j} K_{k]}. \end{split}$$

So we recovered the "Carrollian conformal algebra" (CCA) and denote it $\mathfrak{cca}_1(d+1)$, since z = 1.

Type D-K_i algebra: carrsch(1+1)

In 1 + 1 spacetime dimensions, the rotation generator J_{ij} vanishes, so another type of algebra is possible corresponding to the case

$$a=1$$
 $b=2$ $c=0$ $\alpha=rac{1}{2}$ $\beta=\gamma=1$

The generators are

$$H = \partial_t , \qquad P = \partial_x , \qquad B = x \partial_t ,$$
$$D = t \partial_t + 2 x \partial_x , \qquad \mathbb{K} = x t \partial_t + x^2 \partial_x ,$$

Type D-K_i algebra: carrsch(1+1)

In 1 + 1 spacetime dimensions, the rotation generator J_{ij} vanishes, so another type of algebra is possible corresponding to the case

$$a=1$$
 $b=2$ $c=0$ $\alpha=rac{1}{2}$ $\beta=\gamma=1$

The generators are

$$\begin{split} H &= \partial_t , \qquad P = \partial_x , \qquad B = x \, \partial_t , \\ D &= t \, \partial_t + 2 \, x \, \partial_x , \qquad \mathbb{K} = x \, t \partial_t + x^2 \, \partial_x , \end{split}$$

satisfying the following commutation relations

$$\begin{split} [D, H] &= -H, & [P, B] = H, \\ [D, P] &= -2P, & [\mathbb{K}, H] = -B, \\ [D, B] &= B, & [\mathbb{K}, P] = -D, \\ [D, \mathbb{K}] &= 2\mathbb{K}. \end{split}$$

Type D-K_i algebra: carrsch(1+1)

In 1 + 1 spacetime dimensions, the rotation generator J_{ij} vanishes, so another type of algebra is possible corresponding to the case

$$a = 1$$
 $b = 2$ $c = 0$ $\alpha = \frac{1}{2}$ $\beta = \gamma = 1$

The generators are

$$\begin{split} H &= \partial_t , \qquad P = \partial_x , \qquad B = x \, \partial_t , \\ D &= t \, \partial_t + 2 \, x \, \partial_x , \qquad \mathbb{K} = x \, t \partial_t + x^2 \, \partial_x , \end{split}$$

satisfying the following commutation relations

$$\begin{split} [D, H] &= -H, & [P, B] = H, \\ [D, P] &= -2P, & [\mathbb{K}, H] = -B, \\ [D, B] &= B, & [\mathbb{K}, P] = -D, \\ [D, \mathbb{K}] &= 2\mathbb{K}. \end{split}$$

This algebra can admit a central charge M such that [H, B] = M, which corresponds to the Carroll-Schrödinger algebra (MN: 2403.11212), denoted by carrsch(1+1).

Infinite-dimensional conformal extensions of the Carroll algebra

We find infinite-dimensional conformal extensions of the Carroll algebra, in two, three and higher spacetime dimensions, denoted by $\widetilde{\mathfrak{confcarr}}_z(d+1)$:

$$\begin{array}{l} \mbox{Spatial conformal Carroll algebra} \left(z=0\right): & \left\{ \begin{array}{l} \mbox{confcarr}_0(1+1) \\ \mbox{confcarr}_0(2+1) \\ \mbox{confcarr}_0(d+1) \end{array} \right. \\ \\ \mbox{Conformal Carroll algebra} \left(0 < |z| < \infty\right): & \left\{ \begin{array}{l} \mbox{confcarr}_z(1+1) \checkmark \\ \mbox{confcarr}_z(2+1) \checkmark \\ \mbox{confcarr}_z(d+1) \end{array} \right. \\ \\ \mbox{Temporal conformal Carroll algebra} \left(|z| = \infty\right): & \left\{ \begin{array}{l} \mbox{confcarr}_\infty(1+1) \checkmark \\ \mbox{confcarr}_\infty(1+1) \end{cases} \\ \\ \mbox{confcarr}_\infty(2+1) \end{array} \right. \\ \end{array} \right. \\ \end{array} \right.$$

In 1+1 dimensions, $J_{ij}=0,$ and the generators of $\mathfrak{confcarr}_z(1+1)$ can be identified as the following generators

$$\begin{split} H &= \partial_t = M_0 , \qquad P = \partial_x = -L_{-1} , \\ B &= x \partial_t = M_1 , \qquad D = z t \partial_t + x \partial_x = -L_0 , \\ K &= x^2 \partial_t = M_2 . \end{split}$$

In 1+1 dimensions, $J_{ij} = 0$, and the generators of $confcarr_z(1+1)$ can be identified as the following generators

$$\begin{split} H &= \partial_t = M_0 , \qquad P = \partial_x = -L_{-1} , \\ B &= x \partial_t = M_1 , \qquad D = z t \partial_t + x \partial_x = -L_0 , \\ K &= x^2 \partial_t = M_2 . \end{split}$$

These generators can be extended to

$$L_n = -z (n+1) x^n t \partial_t - x^{n+1} \partial_x, \qquad M_r = x^r \partial_t.$$

In 1+1 dimensions, $J_{ij} = 0$, and the generators of $confcarr_z(1+1)$ can be identified as the following generators

$$\begin{split} H &= \partial_t = M_0 , \qquad P = \partial_x = -L_{-1} , \\ B &= x \partial_t = M_1 , \qquad D = z t \partial_t + x \partial_x = -L_0 , \\ K &= x^2 \partial_t = M_2 . \end{split}$$

These generators can be extended to

$$L_n = -z (n+1) x^n t \partial_t - x^{n+1} \partial_x, \qquad M_r = x^r \partial_t.$$

satisfying

$$[L_n, L_m] = (n - m) L_{n+m},$$

$$[L_n, M_r] = ((n + 1) z - r) M_{n+r}, \qquad (n, m, r, s \in \mathbb{Z})$$

$$[M_r, M_s] = 0,$$

In 1+1 dimensions, $J_{ij} = 0$, and the generators of $confcarr_z(1+1)$ can be identified as the following generators

$$\begin{split} H &= \partial_t = M_0 , \qquad P = \partial_x = -L_{-1} , \\ B &= x \partial_t = M_1 , \qquad D = z t \partial_t + x \partial_x = -L_0 , \\ K &= x^2 \partial_t = M_2 . \end{split}$$

These generators can be extended to

$$L_n = -z (n+1) x^n t \partial_t - x^{n+1} \partial_x, \qquad M_r = x^r \partial_t.$$

satisfying

$$[L_n, L_m] = (n - m) L_{n+m},$$

$$[L_n, M_r] = ((n+1) z - r) M_{n+r}, \qquad (n, m, r, s \in \mathbb{Z})$$

$$[M_r, M_s] = 0,$$

We refer to this as $\widetilde{confcarr}_z(1+1)$, so

$$\operatorname{confcarr}_z(1+1) \longrightarrow \widetilde{\operatorname{confcarr}}_z(1+1)$$

$$\mathbb{K} = 2z \, x \, t\partial_t + x^2 \partial_x = -L_1$$

$$\mathbb{K} = 2z \, x \, t\partial_t + x^2 \partial_x = -L_1$$

Then the commutation relation

$$[L_1, M_r] = (2z - r) M_{r+1}$$

$$\mathbb{K} = 2z \, x \, t\partial_t + x^2 \partial_x = -L_1$$

Then the commutation relation

$$[L_1, M_r] = (2z - r) M_{r+1}$$

shows that, for any integer or half-integer dynamical exponent $z = \frac{N}{2}$ with $N \in \mathbb{N}$, one can add the spatial SCT generator and truncate the supertranslation generators M_n to the finite collection with $0 \leq n \leq N$ since $[L_1, M_N] = 0$. The Lie algebra spans by

$$\{L_{-1}, L_0, L_1, M_0, M_1, \cdots, M_N\}$$

denoted by $\mathfrak{cca}_{N/2}(1+1)$ and called the "extended Carrollian conformal algebra".

$$\mathbb{K} = 2z \, x \, t\partial_t + x^2 \partial_x = -L_1$$

Then the commutation relation

$$[L_1, M_r] = (2z - r) M_{r+1}$$

shows that, for any integer or half-integer dynamical exponent $z = \frac{N}{2}$ with $N \in \mathbb{N}$, one can add the spatial SCT generator and truncate the supertranslation generators M_n to the finite collection with $0 \leq n \leq N$ since $[L_1, M_N] = 0$. The Lie algebra spans by

$$\{L_{-1}, L_0, L_1, M_0, M_1, \cdots, M_N\}$$

denoted by $\mathfrak{cca}_{N/2}(1+1)$ and called the "extended Carrollian conformal algebra".

• For N = 1: $\operatorname{cca}_{1/2}(1+1) \cong \operatorname{carrsch}(1+1)$ with generators $\{L_{-1}, L_0, L_1, \underbrace{M_0, M_1}_{Y_{\pm 1/2}}\}$

$$\mathbb{K} = 2z \, x \, t\partial_t + x^2 \partial_x = -L_1$$

Then the commutation relation

$$[L_1, M_r] = (2z - r) M_{r+1}$$

shows that, for any integer or half-integer dynamical exponent $z = \frac{N}{2}$ with $N \in \mathbb{N}$, one can add the spatial SCT generator and truncate the supertranslation generators M_n to the finite collection with $0 \leq n \leq N$ since $[L_1, M_N] = 0$. The Lie algebra spans by

$$\{L_{-1}, L_0, L_1, M_0, M_1, \cdots, M_N\}$$

denoted by $\mathfrak{cca}_{N/2}(1+1)$ and called the "extended Carrollian conformal algebra".

• For N = 1: $\operatorname{cca}_{1/2}(1+1) \cong \operatorname{carrsch}(1+1)$ with generators $\{L_{-1}, L_0, L_1, \underbrace{M_0, M_1}_{Y_{\pm 1/2}}\}$

• For
$$N = 2$$
: $\mathfrak{cca}_1(1+1) \cong \mathfrak{bms}_3$ with generators $\{L_{-1}, L_0, L_1, \underbrace{M_0, M_1, M_2}_{M_{\pm 1,0}}\}$
The spatial SCT generator can be identified as

$$\mathbb{K} = 2z \, x \, t\partial_t + x^2 \partial_x = -L_1$$

Then the commutation relation

$$[L_1, M_r] = (2z - r) M_{r+1}$$

shows that, for any integer or half-integer dynamical exponent $z = \frac{N}{2}$ with $N \in \mathbb{N}$, one can add the spatial SCT generator and truncate the supertranslation generators M_n to the finite collection with $0 \leq n \leq N$ since $[L_1, M_N] = 0$. The Lie algebra spans by

$$\{L_{-1}, L_0, L_1, M_0, M_1, \cdots, M_N\}$$

denoted by $\mathfrak{cca}_{N/2}(1+1)$ and called the "extended Carrollian conformal algebra".

- For N = 1: $cca_{1/2}(1+1) \cong carrsch(1+1)$ with generators $\{L_{-1}, L_0, L_1, \underbrace{M_0, M_1}_{Y_{\pm 1/2}}\}$
- For N = 2: $\mathfrak{cca}_1(1+1) \cong \mathfrak{bms}_3$ with generators $\{L_{-1}, L_0, L_1, \underbrace{M_0, M_1, M_2}_{M_{\pm 1,0}}\}$

$$\begin{split} N &= 3: \mathfrak{cca}_{3/2}(1+1) \quad \to \quad Y_{\pm \frac{1}{2}, \pm \frac{3}{2}} \\ N &= 4: \mathfrak{cca}_2(1+1) \quad \to \quad M_{\pm 2, \pm 1, 0} \end{split}$$

In 2+1 spacetime dimensions, we find $(w = x_1 + i x_2 \text{ and } \bar{w} = x_1 - i x_2)$

$\widetilde{\mathrm{confcarr}}_z(2+1)$	generators $(n, r, s \in \mathbb{Z})$
$[L_n, L_m] = (n-m) L_{n+m}$	$L_n := -\frac{z}{2} (n+1) w^n t \partial_t - w^{n+1} \partial_w$
$[\bar{L}_n, \bar{L}_m] = (n-m) \bar{L}_{n+m}$	$\bar{L}_n := -\frac{z}{2} (n+1) \bar{w}^n t \partial_t - \bar{w}^{n+1} \partial_{\bar{w}}$
$[L_n, M_{(r,s)}] = \left(\frac{z}{2}(n+1) - r\right) M_{(r+n,s)}$	$M_{(r,s)} := w^r \bar{w}^s \partial_t$
$[\bar{L}_n, M_{(r,s)}] = (\frac{z}{2}(n+1) - s) M_{(r,s+n)}$	
$[M_{(r,s)}, M_{(t,u)}] = 0$	

In 2+1 spacetime dimensions, we find $(w = x_1 + i x_2 \text{ and } \bar{w} = x_1 - i x_2)$

$\widetilde{\operatorname{confcarr}}_z(2+1)$	generators $(n, r, s \in \mathbb{Z})$
$[L_n, L_m] = (n-m)L_{n+m}$	$L_n := -\frac{z}{2} (n+1) w^n t \partial_t - w^{n+1} \partial_w$
$\left[\bar{L}_n,\bar{L}_m\right] = (n-m)\bar{L}_{n+m}$	$\bar{L}_n := -\frac{z}{2} \left(n+1 \right) \bar{w}^n t \partial_t - \bar{w}^{n+1} \partial_{\bar{w}}$
$[L_n, M_{(r,s)}] = \left(\frac{z}{2}(n+1) - r\right) M_{(r+n,s)}$	$M_{(r,s)} := w^r \bar{w}^s \partial_t$
$[\bar{L}_n, M_{(r,s)}] = (\frac{z}{2}(n+1) - s) M_{(r,s+n)}$	
$[M_{(r,s)},M_{(t,u)}]=0$	

For z = 1, this algebra becomes isomorphic to the extended BMS algebra, i.e.

 $\mathfrak{ebms}_4\cong\widetilde{\mathfrak{confcarr}}_1(2+1)$

In 2+1 spacetime dimensions, we find $(w = x_1 + i x_2 \text{ and } \bar{w} = x_1 - i x_2)$

$\widetilde{\operatorname{confcarr}}_z(2+1)$	generators $(n, r, s \in \mathbb{Z})$
$\begin{bmatrix} L_n, L_m \end{bmatrix} = (n-m)L_{n+m}$ $\begin{bmatrix} \bar{L}_n, \bar{L}_m \end{bmatrix} = (n-m)\bar{L}_{n+m}$	$L_n := -\frac{z}{2} (n+1) w^n t \partial_t - w^{n+1} \partial_w$ $\bar{L}_{\bar{w}} := -\frac{z}{2} (n+1) \bar{w}^n t \partial_t - \bar{w}^{n+1} \partial_{\bar{w}}$
$[L_n, M_{(r,s)}] = (n + m) L_{n+m}$ $[L_n, M_{(r,s)}] = (\frac{z}{2}(n+1) - r) M_{(r+n,s)}$	$M_{(r,s)} := w^r \bar{w}^s \partial_t$
$\begin{bmatrix} \bar{L}_n , M_{(r,s)} \end{bmatrix} = \left(\frac{z}{2}(n+1) - s \right) M_{(r,s+n)}$ $\begin{bmatrix} M_{(r,s)} , M_{(t,u)} \end{bmatrix} = 0$	

For z = 1, this algebra becomes isomorphic to the extended BMS algebra, i.e.

$$\mathfrak{ebms}_4\cong\widetilde{\mathfrak{confcarr}}_1(2+1)$$

On the gravity side, it is interesting to establish consistent asymptotically locally flat boundary conditions for general z.

Two-point functions

$$G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) = \langle 0 | \phi_1(\vec{x}_1, t_1) \phi_2(\vec{x}_2, t_2) | 0 \rangle$$

$$G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) = \langle 0 | \phi_1(\vec{x}_1, t_1) \phi_2(\vec{x}_2, t_2) | 0 \rangle$$

we have

$$(\partial_{t_1} + \partial_{t_2}) G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) = 0, \qquad H = \partial_t$$

$$(\vec{\partial}_{x_1} + \vec{\partial}_{x_2}) G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) = 0, \qquad \vec{P} = \vec{\partial}_x$$

$$(\vec{x}_1\partial_{t_1} + \vec{x}_2\partial_{t_2}) G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) = 0. \qquad \vec{B} = \vec{x} \,\partial_t$$

$$G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) = \langle 0 | \phi_1(\vec{x}_1, t_1) \phi_2(\vec{x}_2, t_2) | 0 \rangle$$

we have

$$\begin{aligned} (\partial_{t_1} + \partial_{t_2}) \, G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) &= 0 \,, \qquad H = \partial_t \\ (\vec{\partial}_{x_1} + \vec{\partial}_{x_2}) \, G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) &= 0 \,, \qquad \vec{P} = \vec{\partial}_x \\ (\vec{x}_1 \partial_{t_1} + \vec{x}_2 \partial_{t_2}) \, G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) &= 0 \,, \qquad \vec{B} = \vec{x} \, \partial_t \end{aligned}$$

One gets, $G^{(2)} = G^{(2)}(\vec{x}_{12}, t_{12})$ where $\vec{x}_{12} = \vec{x}_1 - \vec{x}_2$ and $t_{12} = t_1 - t_2$. Since $\partial_{t_1} F(t_{12}) = \partial_{t_{12}} F(t_{12})$ and $\partial_{t_2} F(t_{12}) = -\partial_{t_{12}} F(t_{12})$ for any function F

$$G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) = \langle 0 | \phi_1(\vec{x}_1, t_1) \phi_2(\vec{x}_2, t_2) | 0 \rangle$$

we have

$$(\partial_{t_1} + \partial_{t_2}) G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) = 0, \qquad H = \partial_t$$
$$(\vec{\partial}_{x_1} + \vec{\partial}_{x_2}) G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) = 0, \qquad \vec{P} = \vec{\partial}_x$$
$$(\vec{x}_1 \partial_{t_1} + \vec{x}_2 \partial_{t_2}) G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) = 0. \qquad \vec{B} = \vec{x} \, \partial_t$$

One gets, $G^{(2)} = G^{(2)}(\vec{x}_{12}, t_{12})$ where $\vec{x}_{12} = \vec{x}_1 - \vec{x}_2$ and $t_{12} = t_1 - t_2$. Since $\partial_{t_1}F(t_{12}) = \partial_{t_{12}}F(t_{12})$ and $\partial_{t_2}F(t_{12}) = -\partial_{t_{12}}F(t_{12})$ for any function F the differential equation is equivalent to

$$\vec{x}_{12} \,\partial_{t_{12}} \,G^{(2)}(\vec{x}_{12}, t_{12}) = 0$$

$$G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) = \langle 0 | \phi_1(\vec{x}_1, t_1) \phi_2(\vec{x}_2, t_2) | 0 \rangle$$

we have

$$(\partial_{t_1} + \partial_{t_2}) G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) = 0, \qquad H = \partial_t$$
$$(\vec{\partial}_{x_1} + \vec{\partial}_{x_2}) G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) = 0, \qquad \vec{P} = \vec{\partial}_x$$
$$(\vec{x}_1 \partial_{t_1} + \vec{x}_2 \partial_{t_2}) G^{(2)}(\vec{x}_1, t_1; \vec{x}_2, t_2) = 0. \qquad \vec{B} = \vec{x} \, \partial_t$$

One gets, $G^{(2)} = G^{(2)}(\vec{x}_{12}, t_{12})$ where $\vec{x}_{12} = \vec{x}_1 - \vec{x}_2$ and $t_{12} = t_1 - t_2$. Since $\partial_{t_1}F(t_{12}) = \partial_{t_{12}}F(t_{12})$ and $\partial_{t_2}F(t_{12}) = -\partial_{t_{12}}F(t_{12})$ for any function F the differential equation is equivalent to

$$\vec{x}_{12} \,\partial_{t_{12}} \,G^{(2)}(\vec{x}_{12}, t_{12}) = 0\,,$$

which is solved as (considering $x \,\delta(x) = 0$)

$$G^{(2)}(\vec{x}_{12}, t_{12}) = G(\vec{x}_{12}) + F(t_{12})\,\delta(\vec{x}_{12})$$

The invariance under temporal SCT, $K = \vec{x} \cdot \vec{x} \partial_t$, is automatically satisfied.

The invariance under temporal SCT, $K = \vec{x} \cdot \vec{x} \partial_t$, is automatically satisfied.

The invariance under dilatation, D, results in:

Dilatation invariance: $D = z t \partial_t + \vec{x} \cdot \vec{\partial}_x + \Delta$	
$G^{(2)}(\vec{x}_{12}, t_{12}) = \int C_1 \vec{x}_{12} ^{-(\Delta_1 + \Delta_2)}, \qquad \Delta_1 + \Delta_2 \neq d$	z = 0
$\int C_1 \vec{x}_{12} ^{-d} + F(t_{12})\delta(\vec{x}_{12}), \Delta_1 + \Delta_2 = d$	z = 0
$G^{(2)}(\vec{x}_{12}, t_{12}) = C_1 \vec{x}_{12} ^{-(\Delta_1 + \Delta_2)} + C_2 t_{12} ^{-(\Delta_1 + \Delta_2 - d)/z} \delta(\vec{x}_{12})$	$z \neq \{0,\infty\}$
$G^{(2)}(\vec{x}_{12}, t_{12}) = \int C_2 t_{12} ^{-(\Delta_1 + \Delta_2)} \delta(\vec{x}_{12}), \qquad \Delta_1 + \Delta_2 \neq 0$	$\gamma = \infty$
$G^{-}(\vec{x}_{12},\vec{v}_{12}) = \int G(\vec{x}_{12}) + C_2 \delta(\vec{x}_{12}), \qquad \Delta_1 + \Delta_2 = 0$	$z = \infty$

The invariance under spatial SCT, K_i results in:

K _i invariance: $K_i = 2 x_i (z t \partial_t + x^j \partial_j + \Delta) - x^2 \partial_i$	
$G^{(2)}(\vec{x}_{12}, t_{12}) = C_1 \vec{x}_{12} ^{-2\Delta} + C_2 t_{12} ^{\frac{d-2\Delta}{z}} \delta(\vec{x}_{12})$	$\Delta_1 = \Delta_2 = \Delta$
$G^{(2)}(\vec{x}_{12}, t_{12}) = C_2 t_{12} ^{\frac{d - (\Delta_1 + \Delta_2)}{z}} \delta(\vec{x}_{12})$	$\Delta_1 \neq \Delta_2$

Three-point functions

$$G^{(3)}(\vec{x}_1, \vec{x}_2, \vec{x}_3; t_1, t_2, t_3) := \langle 0 | \phi_1(t_1, \vec{x}_1) \phi_2(t_2, \vec{x}_2) \phi_3(t_3, \vec{x}_3) | 0 \rangle$$

$$G^{(3)}(\vec{x}_1, \vec{x}_2, \vec{x}_3; t_1, t_2, t_3) := \langle 0 | \phi_1(t_1, \vec{x}_1) \phi_2(t_2, \vec{x}_2) \phi_3(t_3, \vec{x}_3) | 0 \rangle$$

Invariance under the Carrollian boost $\vec{B} = \vec{x} \partial_t$ results in

$$\begin{aligned} (\vec{x}_1\partial_{t_1} + \vec{x}_2\partial_{t_2} + \vec{x}_3\partial_{t_3})G^{(3)}(\vec{x}_{12}, \vec{x}_{23}, \vec{x}_{31}; t_{12}, t_{23}, t_{31}) &= 0\\ (\vec{x}_{12}\partial_{t_{12}} + \vec{x}_{23}\partial_{t_{23}})G^{(3)}(\vec{x}_{12}, \vec{x}_{23}, \vec{x}_{31}; t_{12}, t_{23}, t_{31}) &= 0\,, \end{aligned}$$

$$G^{(3)}(\vec{x}_1, \vec{x}_2, \vec{x}_3; t_1, t_2, t_3) := \langle 0 | \phi_1(t_1, \vec{x}_1) \phi_2(t_2, \vec{x}_2) \phi_3(t_3, \vec{x}_3) | 0 \rangle$$

Invariance under the Carrollian boost $\vec{B} = \vec{x} \partial_t$ results in

$$\begin{aligned} (\vec{x}_1\partial_{t_1} + \vec{x}_2\partial_{t_2} + \vec{x}_3\partial_{t_3})G^{(3)}(\vec{x}_{12}, \vec{x}_{23}, \vec{x}_{31}; t_{12}, t_{23}, t_{31}) &= 0\\ (\vec{x}_{12}\partial_{t_{12}} + \vec{x}_{23}\partial_{t_{23}})G^{(3)}(\vec{x}_{12}, \vec{x}_{23}, \vec{x}_{31}; t_{12}, t_{23}, t_{31}) &= 0\,, \end{aligned}$$

which is solved as,

$$\begin{split} G^{(3)}(\vec{x}_{12}, \vec{x}_{23}, \vec{x}_{31}; t_{12}, t_{23}, t_{31}) &= G(|\vec{x}_{12}|, |\vec{x}_{23}|) + F(t_{12}, t_{23}) \,\delta(\vec{x}_{12}) \,\delta(\vec{x}_{23}) \\ &+ F_1(|\vec{x}_{12}|; t_{23}) \,\delta(\vec{x}_{23}) + F_2(|\vec{x}_{23}|; t_{31}) \,\delta(\vec{x}_{31}) + F_3(|\vec{x}_{31}|; t_{12}) \,\delta(\vec{x}_{12}) \\ &+ \mathcal{F}_1\left(|\vec{x}_{12}|, |\vec{x}_{23}|; \frac{t_{12}}{|\vec{x}_{12}|} - \frac{t_{23}}{|\vec{x}_{23}|}\right) \,\delta\left(\frac{\vec{x}_{12}}{|\vec{x}_{12}|} - \frac{\vec{x}_{23}}{|\vec{x}_{23}|}\right) \\ &+ \mathcal{F}_2\left(|\vec{x}_{23}|, |\vec{x}_{31}|; \frac{t_{23}}{|\vec{x}_{23}|} - \frac{t_{31}}{|\vec{x}_{31}|}\right) \,\delta\left(\frac{\vec{x}_{23}}{|\vec{x}_{23}|} - \frac{\vec{x}_{31}}{|\vec{x}_{31}|}\right) \\ &+ \mathcal{F}_3\left(|\vec{x}_{31}|, |\vec{x}_{12}|; \frac{t_{31}}{|\vec{x}_{31}|} - \frac{t_{12}}{|\vec{x}_{12}|}\right) \,\delta\left(\frac{\vec{x}_{31}}{|\vec{x}_{31}|} - \frac{\vec{x}_{12}}{|\vec{x}_{12}|}\right) \,, \end{split}$$

Dilatation invariance determines G, F, F_i, \mathcal{F}_i ,

Dilatation invariance determines G, F, F_i, \mathcal{F}_i , and K-invariance remove collinear terms such that

 $G^{(3)}(\vec{x}_{12}, \vec{x}_{23}, \vec{x}_{31}; t_{12}, t_{23}, t_{31}) = G(|\vec{x}_{12}|, |\vec{x}_{23}|) + F(t_{12}, t_{23})\,\delta(\vec{x}_{12})\,\delta(\vec{x}_{23})$ $+ F_1(|\vec{x}_{12}|; t_{23})\,\delta(\vec{x}_{23}) + F_2(|\vec{x}_{23}|; t_{31})\,\delta(\vec{x}_{31}) + F_3(|\vec{x}_{31}|; t_{12})\,\delta(\vec{x}_{12})$ Dilatation invariance determines G, F, F_i, \mathcal{F}_i , and K-invariance remove collinear terms such that

$$G^{(3)}(\vec{x}_{12}, \vec{x}_{23}, \vec{x}_{31}; t_{12}, t_{23}, t_{31}) = G(|\vec{x}_{12}|, |\vec{x}_{23}|) + F(t_{12}, t_{23}) \,\delta(\vec{x}_{12}) \,\delta(\vec{x}_{23}) + F_1(|\vec{x}_{12}|; t_{23}) \,\delta(\vec{x}_{23}) + F_2(|\vec{x}_{23}|; t_{31}) \,\delta(\vec{x}_{31}) + F_3(|\vec{x}_{31}|; t_{12}) \,\delta(\vec{x}_{12})$$

 K_i -invariance gives

$$G(\vec{x}_{12}, \vec{x}_{23}, \vec{x}_{31}) = \frac{C_1}{|\vec{x}_{12}|^{\Delta_1 + \Delta_2 - \Delta_3} |\vec{x}_{23}|^{\Delta_3 + \Delta_2 - \Delta_1} |\vec{x}_{31}|^{\Delta_3 + \Delta_1 - \Delta_2}}$$

and

$$F_1(|\vec{x}_{12}|, t_{23}) = \frac{K_1}{|\vec{x}_{12}|^{2\Delta_1} |t_{23}|^{\frac{\Delta_2 + \Delta_3 - \Delta_1 - d}{z}}}$$
$$F_2(|\vec{x}_{23}|, t_{31}) = \frac{K_2}{|\vec{x}_{23}|^{2\Delta_2} |t_{31}|^{\frac{\Delta_1 + \Delta_3 - \Delta_2 - d}{z}}}$$
$$F_3(|\vec{x}_{31}|, t_{12}) = \frac{K_3}{|\vec{x}_{31}|^{2\Delta_3} |t_{12}|^{\frac{\Delta_1 + \Delta_2 - \Delta_3 - d}{z}}}$$

Mojtaba Najafizadeh

PhD Outcomes

Published papers:

Mojtaba Najafizadeh "Massive to massless by applying a nonlocal field redefinition" Phys. Rev. D **107**, 045008 (2023), arXiv:2212.07042

Konstantinos Koutrolikos, Mojtaba Najafizadeh "Super-Carrollian and super-Galilean field theories", Phys. Rev. D **108**, 125014 (2023), arXiv:2309.16786

Hamid Afshar, Xavier Bekaert, Mojtaba Najafizadeh "Classification of conformal Carroll algebras" JHEP 12 (2024) 148, arXiv:2409.19953

Mojtaba Najafizadeh "Carroll-Schrödinger Equation" Accepted in Scientific Reports (2025), arXiv:2403.11212

Presentations:

• International:

Classification of Conformal Carroll Algebras, Poster presentation at Strings 2025 conference, New York University, Abu Dhabi, UAE (Jan. 2025).

Off-shell supersymmetric continuous spin gauge theory, Center for Theoretical Physics, Tomsk State Pedagogical University, Tomsk, Russia (July 2023) [online].

• National:

Carroll Schrödinger Equation, Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran (Feb 2025).

Carroll Fermions and Supersymmetry, School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran (Jan 2024).

Massive to massless by applying a nonlocal field redefinition, 30th IPM Physics Spring Conference, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran (May 2023).

Massive to massless by applying a nonlocal field redefinition, School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran (Feb. 2023).

Mojtaba Najafizadeh

Thank you for your attention!