
Carrollian Field Theory

Mojtaba Najafizadeh

Department of Physics, Faculty of Science, Ferdowsi University of Mashhad

Mashhad, Iran

PhD defense

Wednesday, Esfand 01, 1403

Mojtaba Najafizadeh Carrollian Field Theory PhD defense 1 / 47



Based on:

Hamid Afshar, Xavier Bekaert, Mojtaba Najafizadeh
“Classification of conformal Carroll algebras”
JHEP 12 (2024) 148, arXiv:2409.19953

Along with:

Konstantinos Koutrolikos, Mojtaba Najafizadeh
“Super-Carrollian and super-Galilean field theories”,
Phys. Rev. D 108, 125014 (2023), arXiv:2309.16786

Mojtaba Najafizadeh
“Carroll-Schrödinger Equation”
Accepted in Scientific Reports (2025), arXiv:2403.11212

Mojtaba Najafizadeh Carrollian Field Theory PhD defense 2 / 47



Outline:

Motivation

Carrollian field theory

Carroll algebra

Carrollian conformal algebra

Conformal extensions of the Carroll algebra

Infinite-dimensional conformal extensions

Two-point functions

Three-point functions

Outcomes

Mojtaba Najafizadeh Carrollian Field Theory PhD defense 3 / 47



Motivation
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Two limits:

Galilei limit:
v

c
� 1 ⇐⇒ c→∞ Carroll limit:

v

c
� 1 ⇐⇒ c→ 0
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Motivation

Flat space holography:
Conformal Carroll field theory might be dual to quantum gravity in
asymptotically flat spacetime [S. Pasterski (2021), L. Donnay (2023), ...]

Cosmology and dark energy:
Carroll symmetry might be relevant for de Sitter cosmology and inflation [J. de
Boer, J. Hartong (2022), ...]

Carroll gravity:
M. Henneaux (1979), N. A. Obers (2022), D. Grumiller (2023), ...

String theory:
Carroll symmetries arise in the tensionless limit of string theory [A. Bagchi (2016),
...]

Carroll symmetry in hydrodynamics:
L. Ciambelli, C. Marteau (2018), ...

Quantum mechanics:
M. Najafizadeh (2024), ...
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Carrollian Field Theory
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Carroll Scalar Field Theories

Let us consider the Lagrangian of a relativistic massless scalar field

L = − 1

2
∂µφ∂

µ φ

including the speed of light c

L =
1

2c2
(∂tφ)2 − 1

2
(∂iφ)2

by rescaling the field φ→ c φ, one has

L =
1

2
(∂tφ)2 − 1

2
c2 (∂iφ)2

Taking the Carroll limit c→ 0, one obtains

Electric Carroll scalar field: Le =
1

2
(∂tφ)2

• mass term can be added

J. de Boer (2022), E. A. Bergshoef (2022)
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Carroll Scalar Field Theories

Let us consider again the Lagrangian of a relativistic massless scalar field

L = − 1

2
∂µφ∂

µ φ

including the speed of light c

L =
1

2c2
(∂tφ)2 − 1

2
(∂iφ)2 (1)

This Lagrangian has also an alternative by adding a Lagrange multiplier χ:

L′ = − 1

2
c2 χ2 + χ∂tφ−

1

2
(∂iφ)2 − c2 χ+ ∂tφ = 0 (2)

Taking the Carroll limit c→ 0, one obtains

Magnetic Carroll scalar field: Lm = χ∂tφ−
1

2
(∂iφ)2

• mass term can be added as a tachyon

J. de Boer (2022), E. A. Bergshoef (2022)
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Carroll Fermions and Supersymmetry

Konstantinos Koutrolikos, Mojtaba Najafizadeh
“Super-Carrollian and super-Galilean field theories”,
Phys. Rev. D 108, 125014 (2023), arXiv:2309.16786
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Carroll Fermions

Let us consider the Lagrangian density of a massless Dirac field including c

L = − Ψ̄ (γµ∂µ)Ψ = − Ψ̄
( 1

c
γ0∂t + γi∂i

)
Ψ

Through a Carrollian limit, we found two types of Lagrangians for Carroll fermions:

electric Carroll Dirac: Le = − ψ̄ γ0∂t ψ

magnetic Carroll Dirac: Lm = −
(
ψ̄ γi∂iψ + η̄ γ0∂t ψ + ψ̄ γ0∂t η

)

• These Lagrangians are invariant under the Carroll boost transformations.

• Carroll fermions can be of Dirac, Majorana, or Weyl spinors
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Super-electric Carroll theory

We introduce the super-electric Carroll action by:

S
SUSY

eC =
1

2

∫
dt d3x

{
(∂tφR)2 + (∂tφI)

2 + FR
2 + FI

2 − ψ̄ γ0∂t ψ
}

and find that the action is invariant under the Super-electric Carroll transformations

δφR = ε̄ ψ

δφI = ε̄ i γ5 ψ

δFR = − ε̄ γ0 ∂t ψ

δFI = − ε̄ i γ5γ0 ∂t ψ

δψ = γ0∂t (φR + i γ5 φI) ε− (FR + i γ5 FI) ε

We show that these transformations close off-shell for every field

[ δ1 , δ2 ] = 2 (ε̄2 γ
0 ε1) ∂t
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Super-magnetic Carroll theory

We introduce the super-magnetic Carroll action by:

S
SUSY

mC =

∫
dt d3x

{
χ1 ∂t φR + χ2 ∂t φI + FRGR + FI GI +

1

2
λ̄ γ0 ψ − 1

2
ψ̄ γ0 λ

}

and find that the action is invariant under the Super-electric Carroll transformations

δφR = ε̄ ψ δφI = ε̄ i γ5 ψ

δχ1 = ε̄ λ δχ2 = ε̄ i γ5 λ

δFR = − ε̄ γ0 ∂t ψ δFI = ε̄ i γ0γ5 ∂t ψ

δGR = − ε̄ γ0 λ δGI = ε̄ i γ0γ5 λ

δψ = γ0∂t (φR + i γ5 φI) ε− (FR + i γ5 FI) ε

δλ = γ0∂t (χ1 + i γ5 χ2) ε− ∂t (GR + i γ5 GI) ε

again these transformations close off-shell for every field

[ δ1 , δ2 ] = 2 (ε̄2 γ
0 ε1) ∂t
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We also derived

Galilei fermions

and generalized them to

Supersymmetry

Mojtaba Najafizadeh Carrollian Field Theory PhD defense 14 / 47



Carroll-Schrödinger Equation

Mojtaba Najafizadeh
“Carroll-Schrödinger Equation”
Accepted in Scientific Reports (2025), arXiv:2403.11212
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Beginning with the tachyon complex scalar field theory, we derived the
Carroll-Schrödinger field theory through a limiting process:

In 1+1 dimensions In 1+d dimensions

(
i~ c ∂x +

~2

2mc2
∂2
t

)
ψ = 0

(
i~c∇x +

~2

2mc2
∂2
t

)
ψ = 0

where ∇x = 1√
x2

(
x · ∂ + d−1

2

)

[H,D] = H [P,D] = 2P

[D,B] = B [D,K] = 2K ?

[H,K] = B [P,K] = D

[H,B] = M [P,B] = H

Canonical quantization is performed, and the two-point function is calculated
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Carroll Algebra
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Carroll Algebra

Recall the Poincaré algebra

[Pµ , Pν ] = 0

[ Jµν , Pρ ] = ηµρ Pν − ηνρ Pµ

[ Jµν , Jρσ ] = ηµρ Jνσ − ηµσ Jνρ − ηνρ Jµσ + ηνσ Jµρ

in which

Pµ := ∂µ Translation generators

 P0 Hamiltonian

Pi Momentum

Jµν := xµ ∂ν − xν ∂µ Lorentz generators

 Ji0 Boosts

Jij Rotations

are ten Poincaré generators in 4d spacetime.
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Carroll Algebra

Poincare generators, P0, Pi, Ji0, Jij , including c (i.e. xµ = (ct, xi)) become:

P0 =
1

c
∂t Pi = ∂i Ji0 = xi

1

c
∂t + c t ∂i Jij = xi∂j − xj∂i

Rescaling the generators, one gets

c P0 → H = ∂t c Ji0 → Bi = xi ∂t + c2 t ∂i

Taking the Carroll limit c→ 0, one obtains the Carroll generators:

H = ∂t Pi = ∂i Bi = xi ∂t Jij = xi∂j − xj∂i

satisfying the Carroll algebra:

[Pi, Bj ] = δijH

[Jij , Pk] = δikPj − δjkPi

[Jij , Bk] = δikBj − δjkBi

[Jij , Jkl] = δikJjl − δjkJil + δjlJik − δilJjk
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Carrollian Conformal Algebra
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Carrollian Conformal Algebra

Generators of the relativistic conformal algebra, i.e. the dilatation D and special
conformal transformations (SCT) Kµ, are given by:

D = xµ∂µ = t∂t + xi∂i , Kµ = 2xµ x
ν∂ν − xνxν∂µ ,

where the critical exponent z (the coefficient of t∂t) is z = 1.

Similarly, one can
consider components of the conformal algebra including c. By rescaling generators and
taking the limit (c→ 0) one gets:

D = t∂t + xi∂i , K = x2∂t , Ki = 2xi (t∂t + xj∂j)− x2∂i

satisfying the “Carrollian conformal algebra“ (CCA):

[Pi , Bj ] = δij H , [D , H ] = −H , [K , Pi ] = − 2Bi ,

[Pi , Jjk ] = δi[j Pk] , [D , Pi ] = −Pi , [Ki , H ] = − 2Bi ,

[Bi , Jjk ] = δi[j Bk] , [D , K ] = K , [Ki , Pj ] = − 2 δij D − 2 Jij ,

[ Jij , Jkl ] = δ[i[kJl]j] , [D , Ki ] = Ki , [Ki , Bj ] = − δij K ,

[Ki , Jjk ] = δi[jKk] .

︸ ︷︷ ︸
Carroll algebra

︸ ︷︷ ︸
Conformal extension
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satisfying the “Carrollian conformal algebra“ (CCA):

[Pi , Bj ] = δij H , [D , H ] = −H , [K , Pi ] = − 2Bi ,

[Pi , Jjk ] = δi[j Pk] , [D , Pi ] = −Pi , [Ki , H ] = − 2Bi ,

[Bi , Jjk ] = δi[j Bk] , [D , K ] = K , [Ki , Pj ] = − 2 δij D − 2 Jij ,

[ Jij , Jkl ] = δ[i[kJl]j] , [D , Ki ] = Ki , [Ki , Bj ] = − δij K ,

[Ki , Jjk ] = δi[jKk] .

︸ ︷︷ ︸
Carroll algebra

︸ ︷︷ ︸
Conformal extension
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We asked,

are there any other conformal extensions of

the Carroll algebra?
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Conformal extensions of the Carroll algebra
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Minimal conformal extensions of the Carroll algebra

let us consider the generators {D,K,Ki} of the Carrollian conformal algebra with
some arbitrary parameters a, b, c, α, β, γ:

H = ∂t , Pi = ∂i , Bi = xi ∂t , Jij = xi ∂j − xj ∂i

D = a t∂t + b xi∂i , K = c x2∂t , Ki = 2αxi t∂t + 2β xi x
j∂j − γ x2∂i .

Accordingly, one gets the following non-trivial commutation relations

[D , H ] = − aH , [K , Ki ] = 2xiK (α− 2β + γ) ,

[D , Pi ] = − b Pi , [Ki , H ] = − 2αBi ,

[D , Bi ] = (b− a)Bi , [Ki , Pj ] = − 2 δij (α t ∂t + β xk∂k)− Jij (β + γ)− J̃ij (β − γ) ,

[D , K ] = (2b− a)K , [Ki , Bj ] = − 2xiBj (α− β)− δij γ x
2 ∂t ,

[D , Ki ] = bKi , [Ki , Jjk ] = δi[jKk] ,

[K , Pi ] = − 2 cBi , [Ki , Kj ] = 2 γ (γ − β)x2 Jij ,

where J̃ij := xi ∂j + xj ∂i .
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In general, one can think of the Carroll algebra as being conformally extended by
adding the conformal generators (D,K,Ki) in seven different ways:

D, K, ��ZZKi, D−K, ���XXXD−Ki, ���XXXK−Ki, D−K−Ki .

However, one immediately finds that satisfying the closure of commutation relations
cancels some of the mentioned cases. In addition, the type D−Ki, which was ruled
out, can in fact be a possible type in 1 + 1 dimensions. Therefore, the five general
types of conformal Carroll algebras are:

Conformal Carroll algebras Symbol Name

Type K algebra Kcarr(d+ 1) temporal SCT-Carroll algebra

Type D algebras scalcarrz(d+ 1) scaling Carroll algebras

Type D-K algebras confcarrz(d+ 1) conformal Carroll algebras

Type D-K-Ki algebra cca1(d+ 1) Carrollian conformal algebra

Type D-Ki algebra carrsch(1 + 1) Carroll-Schrödinger algebra
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Type K algebra: Kcarr(d+ 1)

This type of algebra corresponds to the case

c 6= 0 which we set c = 1 , & a = b = α = β = γ = 0

resulting in the generators D and Ki to be trivially realised. The generators are

H = ∂t , Pi = ∂i , Bi = xi ∂t , Jij = xi ∂j − xj ∂i ,

K = x2∂t ,

satisfying the following non-zero commutation relations

[Pi , Bj ] = δij H , [K , Pi ] = − 2Bi ,

[Pi , Jjk ] = δi[j Pk] ,

[Bi , Jjk ] = δi[j Bk] ,

[ Jij , Jkl ] = δ[i[kJl]j] .

We called this the “temporal SCT-Carroll algebra” and denote it Kcarr(d+ 1).
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Type D algebras: scalcarrz(d+ 1)

This type of algebra corresponds to the case

a or b 6= 0 & c = α = β = γ = 0

resulting in the generators K and Ki to be trivially realised. The generators are

H = ∂t , Pi = ∂i , Bi = xi ∂t , Jij = xi ∂j − xj ∂i

D = a t ∂t + b xi∂i ,

satisfying the following non-zero commutation relations

[Pi , Bj ] = δij H , [D , H ] = − aH ,

[Pi , Jjk ] = δi[j Pk] , [D , Pi ] = − b Pi ,
[Bi , Jjk ] = δi[j Bk] , [D , Bi ] = (b− a)Bi ,

[ Jij , Jkl ] = δ[i[kJl]j] ,

Setting a = z and b = 1, one has D = z t ∂t + xi∂i , z ∈ R

We called this the “scaling Carroll algebras” and denote it scalcarrz(d+ 1).

scalcarr0(d+ 1) −→ spatial scaling Carroll algebra

scalcarr1(d+ 1) −→ isotropic scaling Carroll algebra

scalcarr∞(d+ 1) −→ temporal scaling Carroll algebra
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Type D-K algebras: confcarrz(d+ 1)

This type of algebra corresponds to the case

a or b 6= 0 (a = z, b = 1) & c 6= 0 (c = 1) & α = β = γ = 0

resulting in the generator Ki to be trivially realised. The generators are

H = ∂t , Pi = ∂i , Bi = xi ∂t , Jij = xi ∂j − xj ∂i

D = z t ∂t + xi∂i , K = x2∂t ,

satisfying the following non-zero commutation relations

[Pi , Bj ] = δij H , [D , H ] = − z H , [K , Pi ] = − 2Bi ,

[Pi , Jjk ] = δi[j Pk] , [D , Pi ] = −Pi ,
[Bi , Jjk ] = δi[j Bk] , [D , Bi ] = (1− z)Bi ,
[ Jij , Jkl ] = δ[i[kJl]j] , [D , K ] = (2− z)K ,

We called this the “conformal Carroll algebras of dynamical exponent z” and denote it
confcarrz(d+ 1).
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These three types of algebras can be visualized in the following figure:

Dt = a t ∂t

Dx = b xi∂i

K = c x2 ∂t
Type K algebra

Type D-K algebras

Type D algebras

Carroll

(0, b, 0)

(0, b, c)(0, 0, c)

(a, 0, 0)
(a, b, 0)

(a, b, c)(a, 0, c)
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Type D-K-Ki algebra: cca1(d+ 1)

This type of algebra corresponds to the case

a = b = c = α = β = γ = 1

The generators are

H = ∂t , Pi = ∂i , Bi = xi ∂t , Jij = xi ∂j − xj ∂i ,

D = t∂t + xi∂i , K = x2∂t , Ki = 2xi (t∂t + xj∂j)− x2∂i ,

satisfying the following non-zero commutation relations

[Pi , Bj ] = δij H , [D , H ] = −H , [K , Pi ] = − 2Bi ,

[Pi , Jjk ] = δi[j Pk] , [D , Pi ] = −Pi , [Ki , H ] = − 2Bi ,

[Bi , Jjk ] = δi[j Bk] , [D , K ] = K , [Ki , Pj ] = − 2 δij D − 2 Jij ,

[ Jij , Jkl ] = δ[i[kJl]j] , [D , Ki ] = Ki , [Ki , Bj ] = − δij K ,

[Ki , Jjk ] = δi[jKk] .

So we recovered the “Carrollian conformal algebra” (CCA) and denote it cca1(d+ 1),
since z = 1.
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Type D-Ki algebra: carrsch(1 + 1)

In 1 + 1 spacetime dimensions, the rotation generator Jij vanishes, so another type of
algebra is possible corresponding to the case

a = 1 b = 2 c = 0 α =
1

2
β = γ = 1

The generators are

H = ∂t , P = ∂x , B = x ∂t ,

D = t ∂t + 2x ∂x , K = x t∂t + x2 ∂x ,

satisfying the following commutation relations

[D , H ] = −H , [P , B ] = H ,

[D , P ] = − 2P , [K , H ] = −B ,
[D , B ] = B , [K , P ] = −D ,

[D , K ] = 2K .

This algebra can admit a central charge M such that [H , B ] = M , which corresponds
to the Carroll-Schrödinger algebra (MN: 2403.11212), denoted by carrsch(1 + 1).
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Infinite-dimensional conformal extensions of

the Carroll algebra
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We find infinite-dimensional conformal extensions of the Carroll algebra, in two, three
and higher spacetime dimensions, denoted by Čconfcarrz(d+ 1):

Spatial conformal Carroll algebra (z = 0) :


Čconfcarr0(1 + 1)

Čconfcarr0(2 + 1)

Čconfcarr0(d+ 1)

Conformal Carroll algebras (0 < |z| <∞) :


Čconfcarrz(1 + 1) X

Čconfcarrz(2 + 1) X

Čconfcarrz(d+ 1)

Temporal conformal Carroll algebra (|z| =∞) :


Čconfcarr∞(1 + 1)

Čconfcarr∞(2 + 1)

Čconfcarr∞(d+ 1)
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In 1+1 dimensions, Jij = 0, and the generators of confcarrz(1 + 1) can be identified as
the following generators

H = ∂t = M0 , P = ∂x = −L−1 ,

B = x ∂t = M1 , D = z t ∂t + x ∂x = −L0 ,

K = x2∂t = M2 .

These generators can be extended to

Ln = − z (n+ 1)xn t ∂t − xn+1 ∂x , Mr = x r ∂t .

satisfying

[Ln , Lm ] = (n−m)Ln+m ,

[Ln , Mr ] =
(
(n+ 1) z − r

)
Mn+r , (n,m, r, s ∈ Z)

[Mr , Ms ] = 0 ,

We refer to this as Čconfcarrz(1 + 1), so

confcarrz(1 + 1) −→ Čconfcarrz(1 + 1)
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[Mr , Ms ] = 0 ,

We refer to this as Čconfcarrz(1 + 1), so

confcarrz(1 + 1) −→ Čconfcarrz(1 + 1)
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The spatial SCT generator can be identified as

K = 2z x t∂t + x2∂x = −L1

Then the commutation relation

[L1 , Mr ] =
(
2z − r

)
Mr+1

shows that, for any integer or half-integer dynamical exponent z = N
2

with N ∈ N, one
can add the spatial SCT generator and truncate the supertranslation generators Mn to
the finite collection with 0 6 n 6 N since [L1 , MN ] = 0. The Lie algebra spans by

{L−1, L0, L1,M0,M1, · · · ,MN}

denoted by ccaN/2(1 + 1) and called the “extended Carrollian conformal algebra”.

• For N = 1: cca1/2(1 + 1) ∼= carrsch(1 + 1) with generators {L−1, L0, L1,M0,M1︸ ︷︷ ︸
Y±1/2

}

• For N = 2: cca1(1 + 1) ∼= bms3 with generators {L−1, L0, L1,M0,M1,M2︸ ︷︷ ︸
M±1,0

}

N = 3 : cca3/2(1 + 1) → Y± 1
2
,± 3

2

N = 4 : cca2(1 + 1) → M±2,±1,0
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In 2+1 spacetime dimensions, we find (w = x1 + i x2 and w̄ = x1 − i x2)

Čconfcarrz(2 + 1) generators (n, r, s ∈ Z)

[Ln , Lm ] = (n−m)Ln+m Ln := − z
2

(n+ 1)w n t ∂t − w n+1 ∂w

[ L̄n , L̄m ] = (n−m) L̄n+m L̄n := − z
2

(n+ 1) w̄ n t ∂t − w̄ n+1 ∂w̄

[Ln , M(r,s) ] =
(
z
2
(n+ 1)− r

)
M(r+n,s) M(r,s) := wr w̄s ∂t

[ L̄n , M(r,s) ] =
(
z
2
(n+ 1)− s

)
M(r,s+n)

[M(r,s) , M(t,u) ] = 0

For z = 1, this algebra becomes isomorphic to the extended BMS algebra, i.e.

ebms4
∼= Čconfcarr1(2 + 1)

On the gravity side, it is interesting to establish consistent asymptotically locally flat
boundary conditions for general z.
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Two-point functions
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If we consider the two-point function

G(2)(~x1, t1; ~x2, t2) = 〈0|φ1(~x1, t1)φ2(~x2, t2)|0〉

we have

(∂t1 + ∂t2)G(2)(~x1, t1; ~x2, t2) = 0 , H = ∂t

(~∂x1 + ~∂x2)G(2)(~x1, t1; ~x2, t2) = 0 , ~P = ~∂x

(~x1∂t1 + ~x2∂t2)G(2)(~x1, t1; ~x2, t2) = 0 . ~B = ~x ∂t

One gets, G(2) = G(2)(~x12, t12) where ~x12 = ~x1 − ~x2 and t12 = t1 − t2. Since
∂t1F (t12) = ∂t12F (t12) and ∂t2F (t12) = − ∂t12F (t12) for any function F the
differential equation is equivalent to

~x12 ∂t12 G
(2)(~x12, t12) = 0 ,

which is solved as (considering x δ(x) = 0)

G(2)(~x12, t12) = G
(
~x12

)
+ F (t12) δ(~x12)
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The invariance under temporal SCT, K = ~x · ~x ∂t, is automatically satisfied.

The invariance under dilatation, D, results in:

Dilatation invariance: D = z t∂t + ~x · ~∂x + ∆

G(2)(~x12, t12) =

C1 |~x12|−(∆1+∆2), ∆1 + ∆2 6= d

C1 |~x12|−d + F (t12)δ(~x12), ∆1 + ∆2 = d
z = 0

G(2)(~x12, t12) = C1 |~x12|−(∆1+∆2) + C2 |t12|−(∆1+∆2−d)/zδ(~x12) z 6= {0,∞}

G(2)(~x12, t12) =

C2 |t12|−(∆1+∆2)δ(~x12), ∆1 + ∆2 6= 0

G(~x12) + C2 δ(~x12), ∆1 + ∆2 = 0
z =∞
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The invariance under spatial SCT, Ki results in:

Ki invariance: Ki = 2xi (z t∂t + xj∂j + ∆)− x2∂i

G(2)(~x12, t12) = C1 |~x12|−2∆ + C2 |t12|
d−2∆

z δ(~x12) ∆1 = ∆2 = ∆

G(2)(~x12, t12) = C2 |t12|
d−(∆1+∆2)

z δ(~x12) ∆1 6= ∆2
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Three-point functions
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If we consider the three-point function

G(3)(~x1, ~x2, ~x3; t1, t2, t3) := 〈0|φ1(t1, ~x1)φ2(t2, ~x2)φ3(t3, ~x3)|0〉

Invariance under the Carrollian boost ~B = ~x ∂t results in

(~x1∂t1 + ~x2∂t2 + ~x3∂t3)G(3)(~x12, ~x23, ~x31; t12, t23, t31) = 0

(~x12∂t12 + ~x23∂t23)G(3)(~x12, ~x23, ~x31; t12, t23, t31) = 0 ,

which is solved as,

G(3)(~x12, ~x23, ~x31; t12, t23, t31) = G
(
|~x12|, |~x23|

)
+ F (t12, t23) δ(~x12) δ(~x23)

+ F1

(
|~x12|; t23

)
δ(~x23) + F2

(
|~x23|; t31

)
δ(~x31) + F3

(
|~x31|; t12

)
δ(~x12)

+ F1

(
|~x12|, |~x23| ;

t12

|~x12|
− t23

|~x23|

)
δ

(
~x12

|~x12|
− ~x23

|~x23|

)
+ F2

(
|~x23|, |~x31| ;

t23

|~x23|
− t31

|~x31|

)
δ

(
~x23

|~x23|
− ~x31

|~x31|

)
+ F3

(
|~x31|, |~x12| ;

t31

|~x31|
− t12

|~x12|

)
δ

(
~x31

|~x31|
− ~x12

|~x12|

)
,
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− ~x23

|~x23|

)
+ F2

(
|~x23|, |~x31| ;

t23

|~x23|
− t31

|~x31|

)
δ

(
~x23

|~x23|
− ~x31

|~x31|

)
+ F3

(
|~x31|, |~x12| ;

t31

|~x31|
− t12

|~x12|

)
δ

(
~x31

|~x31|
− ~x12

|~x12|

)
,
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Dilatation invariance determines G,F, Fi,Fi,

and K-invariance remove collinear terms
such that

G(3)(~x12, ~x23, ~x31; t12, t23, t31) = G
(
|~x12|, |~x23|

)
+ F (t12, t23) δ(~x12) δ(~x23)

+ F1

(
|~x12|; t23

)
δ(~x23) + F2

(
|~x23|; t31

)
δ(~x31) + F3

(
|~x31|; t12

)
δ(~x12)

Ki-invariance gives

G(~x12, ~x23, ~x31) =
C1

|~x12|∆1+∆2−∆3 |~x23|∆3+∆2−∆1 |~x31|∆3+∆1−∆2

and

F1

(
|~x12|, t23

)
=

K1

|~x12|2∆1 |t23|
∆2+∆3−∆1−d

z

F2

(
|~x23|, t31

)
=

K2

|~x23|2∆2 |t31|
∆1+∆3−∆2−d

z

F3

(
|~x31|, t12

)
=

K3

|~x31|2∆3 |t12|
∆1+∆2−∆3−d

z

Mojtaba Najafizadeh Carrollian Field Theory PhD defense 43 / 47



Dilatation invariance determines G,F, Fi,Fi, and K-invariance remove collinear terms
such that

G(3)(~x12, ~x23, ~x31; t12, t23, t31) = G
(
|~x12|, |~x23|

)
+ F (t12, t23) δ(~x12) δ(~x23)

+ F1

(
|~x12|; t23

)
δ(~x23) + F2

(
|~x23|; t31

)
δ(~x31) + F3

(
|~x31|; t12

)
δ(~x12)

Ki-invariance gives

G(~x12, ~x23, ~x31) =
C1

|~x12|∆1+∆2−∆3 |~x23|∆3+∆2−∆1 |~x31|∆3+∆1−∆2

and

F1

(
|~x12|, t23

)
=

K1

|~x12|2∆1 |t23|
∆2+∆3−∆1−d

z

F2

(
|~x23|, t31

)
=

K2

|~x23|2∆2 |t31|
∆1+∆3−∆2−d

z

F3

(
|~x31|, t12

)
=

K3

|~x31|2∆3 |t12|
∆1+∆2−∆3−d

z

Mojtaba Najafizadeh Carrollian Field Theory PhD defense 43 / 47



Dilatation invariance determines G,F, Fi,Fi, and K-invariance remove collinear terms
such that

G(3)(~x12, ~x23, ~x31; t12, t23, t31) = G
(
|~x12|, |~x23|

)
+ F (t12, t23) δ(~x12) δ(~x23)

+ F1

(
|~x12|; t23

)
δ(~x23) + F2

(
|~x23|; t31

)
δ(~x31) + F3

(
|~x31|; t12

)
δ(~x12)

Ki-invariance gives

G(~x12, ~x23, ~x31) =
C1

|~x12|∆1+∆2−∆3 |~x23|∆3+∆2−∆1 |~x31|∆3+∆1−∆2

and

F1

(
|~x12|, t23

)
=

K1

|~x12|2∆1 |t23|
∆2+∆3−∆1−d

z

F2

(
|~x23|, t31

)
=

K2

|~x23|2∆2 |t31|
∆1+∆3−∆2−d

z

F3

(
|~x31|, t12

)
=

K3

|~x31|2∆3 |t12|
∆1+∆2−∆3−d

z

Mojtaba Najafizadeh Carrollian Field Theory PhD defense 43 / 47



PhD Outcomes
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PhD outcomes:

Published papers:

Mojtaba Najafizadeh
“Massive to massless by applying a nonlocal field redefinition”
Phys. Rev. D 107, 045008 (2023), arXiv:2212.07042

Konstantinos Koutrolikos, Mojtaba Najafizadeh
“Super-Carrollian and super-Galilean field theories”,
Phys. Rev. D 108, 125014 (2023), arXiv:2309.16786

Hamid Afshar, Xavier Bekaert, Mojtaba Najafizadeh
“Classification of conformal Carroll algebras”
JHEP 12 (2024) 148, arXiv:2409.19953

Mojtaba Najafizadeh
“Carroll-Schrödinger Equation”
Accepted in Scientific Reports (2025), arXiv:2403.11212
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PhD outcomes:

Presentations:

• International:
Classification of Conformal Carroll Algebras, Poster presentation at Strings 2025
conference, New York University, Abu Dhabi, UAE (Jan. 2025).

Off-shell supersymmetric continuous spin gauge theory, Center for Theoretical
Physics, Tomsk State Pedagogical University, Tomsk, Russia (July 2023) [online ].

• National:

Carroll Schrödinger Equation, Department of Physics, Ferdowsi University of
Mashhad, Mashhad, Iran (Feb 2025).

Carroll Fermions and Supersymmetry, School of Particles and Accelerators,
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran (Jan 2024).

Massive to massless by applying a nonlocal field redefinition, 30th IPM Physics
Spring Conference, Institute for Research in Fundamental Sciences (IPM), Tehran,
Iran (May 2023).

Massive to massless by applying a nonlocal field redefinition, School of Physics,
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran (Feb. 2023).
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Thank you for your attention!
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