Building string field theory using machine learning

Harold ERBIN

CEA-LIST (France), MIT & IAIFI (USA)

Ferdowsi university of Mashhad – 19 July 2023

In collaboration with:

– Atakan Hilmi Fırat (MIT, IAIFI)

arXiv: [2211.09129](http://arxiv.org/abs/2211.09129)

Funded by the European Union (Horizon 2020)

Outline

[Introduction](#page-6-0)

[String field theory](#page-16-0)

[Machine learning](#page-43-0)

[Minimal area string vertices](#page-61-0)

[Machine learning for string field theory](#page-80-0)

[Conclusion](#page-98-0)

- ▶ string field theory (SFT)
	- ▶ 2nd quantized formulation of string theory
	- \blacktriangleright amplitude = 2d conformal field theory (CFT) correlation function integrated over moduli space of Riemann surfaces

- ▶ string field theory (SFT)
	- ▶ 2nd quantized formulation of string theory
	- \blacktriangleright amplitude = 2d conformal field theory (CFT) correlation function integrated over moduli space of Riemann surfaces
- \blacktriangleright interactions $=$ string vertices
	- \triangleright characterized by 1) local coordinates, 2) moduli subspace
	- \blacktriangleright Feynman diagram sum = moduli space covering

- ▶ string field theory (SFT)
	- ▶ 2nd quantized formulation of string theory
	- \blacktriangleright amplitude = 2d conformal field theory (CFT) correlation function integrated over moduli space of Riemann surfaces
- \blacktriangleright interactions $=$ string vertices
	- \triangleright characterized by 1) local coordinates, 2) moduli subspace
	- \blacktriangleright Feynman diagram sum = moduli space covering
- ▶ minimal area vertices (classical level)
	- built from Strebel quadratic differential
	- ▶ parametrized by accessory parameters (uniformization)
	- ▶ compute mapping radii \rightarrow local coordinates
	- \blacktriangleright extract vertex region

- ▶ string field theory (SFT)
	- ▶ 2nd quantized formulation of string theory
	- \blacktriangleright amplitude = 2d conformal field theory (CFT) correlation function integrated over moduli space of Riemann surfaces
- \blacktriangleright interactions $=$ string vertices
	- \triangleright characterized by 1) local coordinates, 2) moduli subspace
	- \blacktriangleright Feynman diagram sum = moduli space covering
- ▶ minimal area vertices (classical level)
	- built from Strebel quadratic differential
	- ▶ parametrized by accessory parameters (uniformization)
	- ▶ compute mapping radii \rightarrow local coordinates
	- \blacktriangleright extract vertex region

▶ use neural networks to parametrize accessory parameters and vertex region

Outline: 1. Introduction

[Introduction](#page-6-0)

[String field theory](#page-16-0)

[Machine learning](#page-43-0)

[Minimal area string vertices](#page-61-0)

[Machine learning for string field theory](#page-80-0)

[Conclusion](#page-98-0)

From worldsheet string theory to string field theory (1)

▶ usual formulation: worldsheet

- ▶ 1st-quantized (dynamics of a few strings)
- ▶ various problems (on-shell, divergences, perturbative. . .)

From worldsheet string theory to string field theory (1)

▶ usual formulation: worldsheet

- ▶ 1st-quantized (dynamics of a few strings)
- \triangleright various problems (on-shell, divergences, perturbative...)
- ▶ 2nd quantization \rightarrow string field theory (SFT)
	- \triangleright modern language and tools of field theory (renormalization...)
	- \triangleright constructive, symmetries manifest
	- ▶ prove consistency (unitarity, analyticity, finiteness...)
	- \blacktriangleright study backgrounds (independence, fluxes, D -instantons...)
	- ▶ compute amplitudes and effective actions efficiently

From worldsheet string theory to string field theory (1)

▶ usual formulation: worldsheet

- ▶ 1st-quantized (dynamics of a few strings)
- \triangleright various problems (on-shell, divergences, perturbative...)
- ▶ 2nd quantization \rightarrow string field theory (SFT)
	- \triangleright modern language and tools of field theory (renormalization...)
	- \triangleright constructive, symmetries manifest
	- ▶ prove consistency (unitarity, analyticity, finiteness...)
	- \blacktriangleright study backgrounds (independence, fluxes, D -instantons...)
	- ▶ compute amplitudes and effective actions efficiently

▶ problems

- ▶ action: non-local, non-polynomial, ∞ number of fields
- \triangleright general properties known, but not explicit form

From worldsheet string theory to string field theory (2)

Local coordinates and moduli space decomposition

Building string vertices with machine learning

Objective (physics)

Construct action using machine learning in order to extract numbers from SFT (in particular, closed string tachyon vacuum). Building string vertices with machine learning

Objective (physics)

Construct action using machine learning in order to extract numbers from SFT (in particular, closed string tachyon vacuum).

Objective (math)

Construct functions on and subspaces of moduli space of Riemann surfaces using machine learning.

Tachyon vacuum

- ▶ main application: study closed string tachyon vacuum (settle existence or not)
- ▶ method
	- ▶ perform level-truncation (keep fields up to some mass)
	- \triangleright compute potential up to some order in g_s
	- ▶ integrate out other fields (except dilaton)
	- ▶ extrapolate in level and order of interaction

Tachyon vacuum

- ▶ main application: study closed string tachyon vacuum (settle existence or not)
- ▶ method
	- ▶ perform level-truncation (keep fields up to some mass)
	- \triangleright compute potential up to some order in g_s
	- ▶ integrate out other fields (except dilaton)
	- ▶ extrapolate in level and order of interaction
- \blacktriangleright truncated tachyon potential

$$
V(t) = -t^2 + \sum_{n\geq 3} \frac{v_n}{n!} t^n, \qquad v_4 \approx 72.32 \pm 0.15
$$

previous results: v⁴ ≈ 72*.*39

[[hep-th/9412106](http://arxiv.org/abs/hep-th/9412106), Belopolsky; [hep-th/0408067](http://arxiv.org/abs/hep-th/0408067), Moeller]

 \triangleright other backgrounds: twisted tachyons on \mathbb{C}/\mathbb{Z}_N ... [[hep-th/0111004](http://arxiv.org/abs/hep-th/0111004), Dabholkar; hep-th/0403051[, Okawa-Zwiebach\]](http://arxiv.org/abs/hep-th/0403051) Outline: 2. String field theory

[Introduction](#page-6-0)

[String field theory](#page-16-0)

[Machine learning](#page-43-0)

[Minimal area string vertices](#page-61-0)

[Machine learning for string field theory](#page-80-0)

[Conclusion](#page-98-0)

String background

- \triangleright 2*d* conformal field theory (CFT) \triangleright conformally invariant non-linear sigma model of D non-compact scalar fields X^{μ} \rightarrow spacetime with metric $G_{\mu\nu}$ and D non-compact dimensions \triangleright a generic internal matter CFT with central charge c_{int} ▶ (b, c) anti-commuting ghosts with central charge $c_{gh} = -26$ from worldsheet reparametrizations
- \blacktriangleright string coupling g_s

[hep-th/9411047[, Bergman-Zwiebach\]](http://arxiv.org/abs/hep-th/9411047)

String background

▶ 2d conformal field theory (CFT)

- \triangleright conformally invariant non-linear sigma model of D non-compact scalar fields X^{μ}
	- \rightarrow spacetime with metric $G_{\mu\nu}$ and D non-compact dimensions
- \triangleright a generic internal matter CFT with central charge c_{int}
- ▶ (b, c) anti-commuting ghosts with central charge $c_{gh} = -26$ from worldsheet reparametrizations
- \blacktriangleright string coupling g_s

[hep-th/9411047[, Bergman-Zwiebach\]](http://arxiv.org/abs/hep-th/9411047)

Notes

- ightharpoontral charge: $D + c_{\text{int}} + c_{\text{gh}} = 0$
- \triangleright free scalar fields \Rightarrow flat spacetime

$$
G_{\mu\nu}=\eta_{\mu\nu}=\mathsf{diag}(\pm 1,\underbrace{1,\ldots,1}_{D-1}).
$$

String field theory action

▶ string field $\Psi \in \mathcal{H}$ (1st-quantized CFT Hilbert space)

▶ level-matching constraints

$$
b_0^- \left| \Psi \right\rangle = \mathit{L}_0^- \left| \Psi \right\rangle = 0
$$

$$
\mathit{L}_0^\pm = \mathit{L}_0 \pm \bar{\mathit{L}}_0, \quad b_0^\pm = b_0 \pm \bar{b}_0, \quad c_0^\pm = (c_0 \pm \bar{c}_0)/2
$$

String field theory action

 \triangleright string field $\Psi \in \mathcal{H}$ (1st-quantized CFT Hilbert space)

 \blacktriangleright level-matching constraints

$$
b_0^- |\Psi\rangle = L_0^- |\Psi\rangle = 0
$$

$$
L_0^{\pm} = L_0 \pm \bar{L}_0, \quad b_0^{\pm} = b_0 \pm \bar{b}_0, \quad c_0^{\pm} = (c_0 \pm \bar{c}_0)/2
$$

Quantum BV master action (prime: omit $g = 0, n = 1, 2, 3$)

$$
S=\frac{1}{2}\left\langle \Psi, Q_{B}\Psi\right\rangle +\sum_{g,n\geq 0}\frac{\hbar^{g}g_{s}^{2g-2+n}}{n!}\mathcal{V}_{g,n}(\Psi^{n})
$$

▶ $\langle \cdot, \cdot \rangle := \langle \cdot | c_0^- | \cdot \rangle$ (BPZ product)

▶ 1st-quantized BRST operator $Q_B : \mathcal{H} \to \mathcal{H}$

▶ string vertices $V_{g,n}$: $\mathcal{H}^{\otimes n} \to \mathbb{C}$ ("contact" interactions)

Example: ϕ^4 scalar field

$$
S = \frac{1}{2} \int d^d k \, \phi(-k)(k^2 + m^2) \phi(k)
$$

+
$$
\frac{\lambda}{4!} \int d^d k_1 \cdots d^d k_4 \, \delta^{(d)}(k_1 + \cdots + k_4) \phi(k_1) \cdots \phi(k_4)
$$

=:
$$
\frac{1}{2} \langle \phi, K\phi \rangle + \frac{\lambda}{4!} \mathcal{V}_4(\phi^4)
$$

▶ 1st-quantized momentum state basis $\{|k\rangle\}$

$$
|\phi\rangle = \int d^d k \, \phi(k) \, |k\rangle \, , \qquad \langle k, k'\rangle = \delta^{(d)}(k + k')
$$

▶ Klein–Gordon operator $K = (p^2 + m^2)$ \blacktriangleright quartic vertex

$$
\mathcal{V}_4(\phi^4) = \int \mathrm{d}^d k_1 \cdots \mathrm{d}^d k_4 \, V_4(k_1, \ldots, k_4) \, \phi(k_1) \cdots \phi(k_4)
$$

$$
V_4(k_1, \ldots, k_4) = \delta^{(d)}(k_1 + \cdots + k_4)
$$

Gauge fixing and Feynman rules

▶ Siegel gauge

 $b_{0}^{+}\left| \Psi \right\rangle =0$

 \blacktriangleright kinetic term

$$
\mathcal{S}_{\text{free,gf}} = \frac{1}{2} \, \left\langle \Psi \right| c_0^- c_0^+ L_0^+ \!\left| \Psi \right\rangle
$$

Gauge fixing and Feynman rules

▶ Siegel gauge

 $b_{0}^{+}\left| \Psi \right\rangle =0$

$$
S_{\text{free,gf}}=\frac{1}{2}\,\left\langle \Psi | c_0^- \, c_0^+ \, L_0^+ | \Psi \right\rangle
$$

$$
\langle A_1 | \frac{b_0^+}{L_0^+} b_0^- | A_2 \rangle = A_1 \longrightarrow A_2
$$

 \blacktriangleright fundamental g-loop *n*-point vertex

$$
\mathcal{V}_{g,n}(A_1,\ldots,A_n) = A_1 \stackrel{g}{\longrightarrow} \begin{pmatrix} A_2 \\ \vdots \\ A_n \end{pmatrix}
$$

Momentum representation (1)

▶ string field Fourier expansion

$$
\ket{\Psi} = \sum_{A} \int \frac{\mathrm{d}^{D}k}{(2\pi)^{D}} \phi_{A}(k) \ket{A,k}
$$

k: D-dimensional momentum

A: discrete labels (Lorentz indices, group repr., KK modes. . .)

▶ 1PI action

$$
S = \frac{1}{2} \int d^D k \phi_A(k) K_{AB}(k) \phi_B(-k)
$$

+
$$
\sum_n \int d^D k_1 \cdots d^D k_n V_{A_1,\dots,A_n}^{(n)}(k_1,\dots,k_n) \phi_{A_1}(k_1) \cdots \phi_{A_n}(k_n)
$$

Momentum representation (2)

Propagator

$$
K_{AB}(k)^{-1} = \frac{-\mathrm{i} M_{AB}}{k^2 + m_A^2} Q_A(k)
$$

- \triangleright M_{AB} mixing matrix for states of equal mass
- \triangleright Q_A polynomial in momentum

Momentum representation (3)

Vertices

$$
-iV_{A_1,...,A_n}^{(n)}(k_1,...,k_n) = -i \int dt e^{-g_{ij}^{\{A_a\}}(t) k_i \cdot k_j - c \sum_{a=1}^n m_a^2} \times P_{A_1,...,A_n}(k_1,...,k_n;t)
$$

- \blacktriangleright t moduli parameters
- \blacktriangleright $P_{\{A_n\}}$ polynomial in $\{k_i\}$
- \triangleright $c > 0 \rightarrow$ damping in sum over states
- \blacktriangleright g_{ii} positive definite
- ▶ no singularity for $k_i \in \mathbb{C}$ (finite)
- \blacktriangleright lim $V^{(n)}=0$ $k^0 \rightarrow \pm i\infty$

$$
\blacktriangleright \lim_{k^0 \to \pm \infty} V^{(n)} = \infty
$$

Green functions

Truncated Green function $=$ sum of Feynman diagrams of the form

$$
\mathcal{F}(p_1,\ldots,p_n) \sim \int d\,\mathcal{T} \prod_s d^D \ell_s e^{-G_{rs}(\mathcal{T})\ell_r \cdot \ell_s - 2H_{ra}(\mathcal{T})\ell_r \cdot p_a - F_{ab}(\mathcal{T})p_a \cdot p_b} \times \prod_i \frac{1}{k_i^2 + m_i^2} \mathcal{P}(p_a,\ell_r;\mathcal{T})
$$

T, moduli parameters, P , polynomial in (p_a, ℓ_r)

- ▶ momenta:
	- **▶** external $\{p_a\}$ ▶ internal $\{k_i\}$ ▶ loop $\{\ell_s\}$
	- k_i = linear combination of $\{p_a, \ell_s\}$
- \triangleright G_{rs} positive definite
	- ▶ integrations over spatial loop momenta *^ℓ*^r converge
	- ▶ integrations over loop energies ℓ_r^0 diverge

Momentum integration

Prescription $=$ generalized Wick rotation $[1604.01783,$ $[1604.01783,$ $[1604.01783,$ Pius-Sen]

- 1. define Green function for Euclidean internal/external momenta
- 2. analytic continuation of external energies $+$ integration contour s.t.
	- \blacktriangleright keep poles on the same side
	- ▶ keep ends at $\pm i\infty$

 \rightarrow analyticity for $\bm{p}_a \in \mathbb{R}$, ρ_a^0 in first quadrant Im $\rho_a^0 > 0,$ Re $\rho_a^0 \geq 0$

Momentum integration

Prescription $=$ generalized Wick rotation $[1604.01783,$ $[1604.01783,$ $[1604.01783,$ Pius-Sen]

- 1. define Green function for Euclidean internal/external momenta
- 2. analytic continuation of external energies $+$ integration contour s.t.
	- \blacktriangleright keep poles on the same side
	- ▶ keep ends at ±i∞

 \rightarrow analyticity for $\bm{p}_a \in \mathbb{R}$, ρ_a^0 in first quadrant Im $\rho_a^0 > 0,$ Re $\rho_a^0 \geq 0$

SFT in a nutshell

- $SFT =$ standard QFT s.t.:
	- \triangleright infinite number of fields (of all spins)
	- \blacktriangleright infinite number of interactions
	- ▶ non-local interactions $\propto e^{-\#k^2}$
	- ▶ reproduce worldsheet amplitudes (if well-defined)

Reviews: [1703.06410[, de Lacroix-HE-Kashyap-Sen-Verma;](http://arxiv.org/abs/1703.06410) [1905.06785](http://arxiv.org/abs/1905.06785), [Erler;](http://arxiv.org/abs/1905.06785) [2301.01686](http://arxiv.org/abs/2301.01686), HE]

SFT in a nutshell

- $SFT =$ standard QFT s.t.:
	- \triangleright infinite number of fields (of all spins)
	- \blacktriangleright infinite number of interactions
	- ▶ non-local interactions $\propto e^{-\#k^2}$
	- \triangleright reproduce worldsheet amplitudes (if well-defined)

Consequences of non-locality:

- \blacktriangleright cannot use position representation
- \triangleright cannot use assumptions from local QFT (micro-causality...)

Reviews: [1703.06410[, de Lacroix-HE-Kashyap-Sen-Verma;](http://arxiv.org/abs/1703.06410) [1905.06785](http://arxiv.org/abs/1905.06785), [Erler;](http://arxiv.org/abs/1905.06785) [2301.01686](http://arxiv.org/abs/2301.01686), HE]

Consistency properties

- ▶ background independence [[hep-th/9311009](http://arxiv.org/abs/hep-th/9311009), Sen-Zwiebach; hep-th/9411047[, Bergman-Zwiebach;](http://arxiv.org/abs/hep-th/9411047) [1711.08468](http://arxiv.org/abs/1711.08468), Sen]
- ▶ Cutkosky rules, unitarity [[1604.01783](http://arxiv.org/abs/1604.01783), Pius-Sen; [1607.08244](http://arxiv.org/abs/1607.08244), Sen]
- ▶ spacetime and moduli space i*ϵ*-prescriptions [[1610.00443](http://arxiv.org/abs/1610.00443), Sen]
- ▶ primitive analyticity, crossing symmetry [[1810.07197](http://arxiv.org/abs/1810.07197), de [Lacroix-HE-Sen\]](http://arxiv.org/abs/1810.07197)
- ▶ soft theorems [[1702.03934](http://arxiv.org/abs/1702.03934), Sen, [1703.00024](http://arxiv.org/abs/1703.00024), Sen]
- ▶ locality? causality? CPT?

Note: also shows consistency of timelike Liouville theory [1905.12689[, Bautista-Dabholkar-HE\]](http://arxiv.org/abs/1905.12689)

Off-shell tree-level string amplitudes

▶ n-point string amplitude with external states $A_i \in \mathcal{H}$

$$
\mathcal{A}_{0,n}(A_1,\ldots,A_n)=\int_{\mathcal{M}_{0,n}}\mathrm{d}^{n-3}\xi\,\left\langle\text{ghosts}\times\prod_i f_{n,i}\circ A_i(0)\right\rangle_{\Sigma_n}
$$

- $\blacktriangleright \langle \cdots \rangle$ CFT correlation function
- \blacktriangleright sum over topologically inequivalent spheres Σ_n with n punctures at (*ξ*1*, . . . , ξ*n)
- ▶ can fix 3 points (*ξ*n−2*, ξ*n−1*, ξ*n) = (0*,* ¹*,* [∞])
- ▶ *^ξ^λ* ∈ M0*,*ⁿ [∼] ^C n−3 (*λ* = 1*, . . . ,* n − 3) moduli space

Off-shell tree-level string amplitudes

▶ n-point string amplitude with external states $A_i \in \mathcal{H}$

$$
\mathcal{A}_{0,n}(A_1,\ldots,A_n)=\int_{\mathcal{M}_{0,n}}\mathrm{d}^{n-3}\xi\,\left\langle\text{ghosts}\times\prod_i f_{n,i}\circ A_i(0)\right\rangle_{\Sigma_n}
$$

- $\blacktriangleright \langle \cdots \rangle$ CFT correlation function
- Sum over topologically inequivalent spheres Σ_n with n punctures at (*ξ*1*, . . . , ξ*n)
- ▶ can fix 3 points (*ξ*n−2*, ξ*n−1*, ξ*n) = (0*,* ¹*,* [∞])
- ▶ *^ξ^λ* ∈ M0*,*ⁿ [∼] ^C n−3 (*λ* = 1*, . . . ,* n − 3) moduli space
- \blacktriangleright ghosts: 1) measure over $\mathcal{M}_{0,n}$, 2) needed for BRST invariance

Off-shell tree-level string amplitudes

▶ n-point string amplitude with external states $A_i \in \mathcal{H}$

$$
\mathcal{A}_{0,n}(A_1,\ldots,A_n)=\int_{\mathcal{M}_{0,n}}\mathrm{d}^{n-3}\xi\,\left\langle\text{ghosts}\times\prod_i f_{n,i}\circ A_i(0)\right\rangle_{\Sigma_n}
$$

- $\blacktriangleright \langle \cdots \rangle$ CFT correlation function
- Sum over topologically inequivalent spheres Σ_n with n punctures at (*ξ*1*, . . . , ξ*n)
- ▶ can fix 3 points (*ξ*n−2*, ξ*n−1*, ξ*n) = (0*,* ¹*,* [∞])
- ▶ *^ξ^λ* ∈ M0*,*ⁿ [∼] ^C n−3 (*λ* = 1*, . . . ,* n − 3) moduli space
- **•** ghosts: 1) measure over $M_{0,n}$, 2) needed for BRST invariance
- \blacktriangleright $f_{n,i}(w_i;\xi_\lambda)$ local coordinates = conformal maps

$$
f_{n,i}(0;\xi_{\lambda}) := \xi_i, \qquad f_{n,i} \circ A_i(0) := |f'_{n,i}(0)|^{2h_i} A_i(f_{n,i}(0))
$$

if A_i is primary with weight (h_i, h_i)
Local coordinates

Motivation: restore SL(2*,* C) invariance, broken by punctures (transformation between patches)

Amplitude and Feynman diagrams

Classical string vertices

▶ string vertex

$$
\mathcal{V}_{0,n}(A_1,\ldots,A_n)=\int_{\mathcal{V}_{0,n}}\mathrm{d}^{n-3}\xi\left\langle\text{ghosts}\times\prod_i f_{n,i}\circ A_i(0)\right\rangle_{\Sigma_n}
$$

Classical string vertices

 \blacktriangleright string vertex

$$
\mathcal{V}_{0,n}(A_1,\ldots,A_n)=\int_{\mathcal{V}_{0,n}}\mathrm{d}^{n-3}\xi\left\langle\text{ghosts}\times\prod_i f_{n,i}\circ A_i(0)\right\rangle_{\Sigma_n}
$$

 \blacktriangleright defined such that

$$
A_{0,n}(A_1,\ldots,A_n)=\mathcal{F}_{0,n}(A_1,\ldots,A_n)+\mathcal{V}_{0,n}(A_1,\ldots,A_n)
$$

F0*,*ⁿ contributions from Feynman diagrams (Riemann surfaces) containing:

- ▶ propagators (long tubes)
- ▶ surfaces in $\mathcal{V}_{0,n'}$ with $n' < n$

▶ V0*,*ⁿ ⊂ M0*,*ⁿ : vertex region ⊂ moduli space

Exercise constraints between all $\{f_{n,i}\}$ ("gluing compatibility")

Moduli space covering

How to build vertices

\blacktriangleright SL(2, \mathbb{C}) vertices

- \blacktriangleright n = 3 sphere: simplest vertex
- \blacktriangleright n = 4 sphere: analytical V_4 boundary, no explicit coordinates [HE, in progress]
- \blacktriangleright $n = 1$ torus: analytical vertex boundary, no explicit coordinates [1704.01210[, Erler-Konopka-Sachs\]](http://arxiv.org/abs/1704.01210)
- ▶ hyperbolic vertices [1706.07366[, Moosavian-Pius;](http://arxiv.org/abs/1706.07366) [1909.00033](http://arxiv.org/abs/1909.00033), [Costello-Zwiebach;](http://arxiv.org/abs/1909.00033) [2102.03936](http://arxiv.org/abs/2102.03936), Fırat]
- ▶ minimal area vertices: optimal representation [\[Zwiebach '91;](https://dx.doi.org/10.1007/BF02096792) [hep-th/9206084](http://arxiv.org/abs/hep-th/9206084), Zwiebach]

How to build vertices

\blacktriangleright SL(2, \mathbb{C}) vertices

- \blacktriangleright n = 3 sphere: simplest vertex
- \blacktriangleright n = 4 sphere: analytical V_4 boundary, no explicit coordinates [HE, in progress]
- \blacktriangleright $n = 1$ torus: analytical vertex boundary, no explicit coordinates [1704.01210[, Erler-Konopka-Sachs\]](http://arxiv.org/abs/1704.01210)
- ▶ hyperbolic vertices [1706.07366[, Moosavian-Pius;](http://arxiv.org/abs/1706.07366) [1909.00033](http://arxiv.org/abs/1909.00033), [Costello-Zwiebach;](http://arxiv.org/abs/1909.00033) [2102.03936](http://arxiv.org/abs/2102.03936), Fırat]
- ▶ minimal area vertices: optimal representation [\[Zwiebach '91;](https://dx.doi.org/10.1007/BF02096792) [hep-th/9206084](http://arxiv.org/abs/hep-th/9206084), Zwiebach]
- ▶ note: superstring vertices can be obtained by dressing bosonic vertices [hep-th/0409018[, Berkovits-Okawa-Zwiebach;](http://arxiv.org/abs/hep-th/0409018) [1403.0940](http://arxiv.org/abs/1403.0940), [Erler-Konopka-Sachs\]](http://arxiv.org/abs/1403.0940)

Outline: 3. Machine learning

[Introduction](#page-6-0)

[String field theory](#page-16-0)

[Machine learning](#page-43-0)

[Minimal area string vertices](#page-61-0)

[Machine learning for string field theory](#page-80-0)

[Conclusion](#page-98-0)

Machine learning

Definition (Samuel)

The field of study that gives computers the ability to learn without being explicitly programmed.

Machine learning

Definition (Samuel)

The field of study that gives computers the ability to learn without being explicitly programmed.

- ▶ approximate function $y = F(x)$ by some structure (neural network, decision tree...) \Rightarrow new data representation
- \triangleright agreement measured by some metric (distance, constraint...)
- \blacktriangleright tune structure parameters to improve approximation

Approaches to machine learning

Learning approaches (task: $x \rightarrow y$)

- \triangleright supervised: learn a map from a set or pairs (x_{train}, y_{train}) , then predict V_{data} from X_{data}
- \triangleright unsupervised: give x_{data} and let the machine find structure (i.e. appropriate y_{data})
- \triangleright reinforcement: give x_{data} , let the machine choose output y_{data} following some rules, reward good and/or punish bad results, iterate

Applications

General idea $=$ pattern recognition

- \blacktriangleright classification / clustering
- ▶ regression (prediction)
- \blacktriangleright transcription / translation
- \blacktriangleright structuring
- ▶ anomaly detection
- \blacktriangleright denoising
- \blacktriangleright synthesis and sampling
- \blacktriangleright density estimation
- ▶ symbolic regression

Applications in industry: computer vision, language processing, medical diagnosis, fraud detection, recommendation system, autonomous driving. . .

Neural network

▶ neural network $=$ sequence of layers implementing computations

▶ layer

- \blacktriangleright output = different data representation
- ▶ transformation parametrized by weights

Neural network

▶ neural network $=$ sequence of layers implementing computations

▶ layer

- \blacktriangleright output = different data representation
- ▶ transformation parametrized by weights
- \triangleright goal: find weights such that the network reproduces the target fonction $y = F(x)$
- ▶ comparison: objective function
- ▶ optimization by gradient descent

Neural network

▶ neural network $=$ sequence of layers implementing computations

 \blacktriangleright layer

- \blacktriangleright output = different data representation
- ▶ transformation parametrized by weights
- \triangleright goal: find weights such that the network reproduces the target fonction $y = F(x)$
- ▶ comparison: objective function
- optimization by gradient descent
- general architecture defined by hyperparameters (number of layers. . .)

Why neural networks?

▶ generically outperform other machine learning approaches

- \blacktriangleright flexible inputs (complex numbers, graphs...)
- \blacktriangleright neural network $=$ differentiable function
	- \triangleright solve for the full function, not points one by one
	- \blacktriangleright better expressivity than fit
	- ▶ may extrapolate outside training region
	- ▶ classication task provides (probabilistic) measure

▶ transfer learning

▶ compact representation of the result, easily reused and shared

Fully connected neural network

$$
x_{i_0}^{(0)} := x_{i_0}
$$

\n
$$
x_{i_1}^{(1)} = g^{(1)} (W_{i_1 i_0}^{(1)} x_{i_0}^{(0)} + b_{i_1}^{(1)})
$$

\n
$$
f_{i_2}(x_{i_0}) := x_{i_2}^{(2)} = g^{(2)} (W_{i_2 i_1}^{(2)} x_{i_1}^{(1)} + b_{i_2}^{(2)})
$$

\n
$$
i_0 = 1, 2, 3; i_1 = 1, ..., 4; i_2 = 1, 2
$$

\n
$$
K = 1; d_{in} = 3; d_{out} = 2; N^{(1)} = 4
$$

▶ input $x^{(0)} := x \in \mathbb{R}^{d_{\text{in}}}$

- ▶ $K \geq 1$ hidden layers, $n \in \{1, ..., K\}$
	- ▶ layer n: $N^{(n)}$ neurons (units) $x^{(n)} \in \mathbb{R}^{N^{(n)}}$
	- ▶ learnable weights $W^{(n)} \in \mathbb{R}^{N^{(n)} \times N^{(n-1)}}$
	- ▶ learnable biases $b^{(n)} \in \mathbb{R}^{N^{(n)}}$ (not displayed)
	- ixed activation functions $g^{(n)}$ (element-wise)

$$
\blacktriangleright \text{ output } x^{(K+1)} := f(x) \in \mathbb{R}^{d_{\text{out}}}
$$

Training

Method:

- 1. fix architecture (number of layers, activation functions. . .)
- 2. learn weights $W^{(n)}$ from gradient descent

Training

Method:

- 1. fix architecture (number of layers, activation functions. . .)
- 2. learn weights $W^{(n)}$ from gradient descent

Gradient descent:

 \triangleright loss function L: overall error to be decreased

$$
L = \sum_{i=1}^{N_{\text{train}}} \text{distance}(y_i^{(\text{train})}, y_i^{(\text{pred})}) + \text{regularization}
$$

common choices: mean squared error, cross-entropy. . .

- ▶ optimizer and its parameters (learning rate, momentum...)
- ▶ *ℓ*¹ and *ℓ*² weight regularization (penalize high and redundant weights)
- ▶ training protocol: early stopping, learning rate decay. . .

Training cycle

▶ hyperparameter tuning

- ▶ adapt architecture and optimization for better results
- ▶ search methods: trial-and-error, grid, random, Bayesian, genetic. . .

Training cycle

▶ hyperparameter tuning

- ▶ adapt architecture and optimization for better results
- ▶ search methods: trial-and-error, grid, random, Bayesian, genetic. . .
- \triangleright main risk: overfitting (= cannot generalize to new data)
	- 1. split data in training, validation and test sets
	- 2. train several models on the training set
	- 3. compare performances on validation set
	- 4. evaluate performance of the best model on test set

 \triangleright consider *n* models in parallel (bagging) to get statistics

Neural network components (1)

▶ convolutional layer: move window over data, combining values with a kernel (to be learned)

 \rightarrow translation covariance, locality, weight sharing

▶ recurrent layer (LSTM, GRU): keep memory of past information in a sequence

 \rightarrow temporal processing

Neural network components (2)

▶ pooling layer: coarse-graining

 \rightarrow reduce internal data size, translation/rotation/scale

invariances

 \triangleright dropout layer: deactivate neurons randomly with probability p

 \rightarrow improve generalization, regularization

 \triangleright batch normalization layer: normalize data, then scale and shift (learnable parameters)

 \rightarrow keep stable internal data, regularization

Images: d2l.ai

ML workflow

"Naive" workflow

- 1. get raw data
- 2. write neural network with many layers
- 3. feed raw data to neural network
- 4. get nice results (or give up)

xkcd.com/1838

ML workflow

Real-world workflow

- 1. understand the problem
- 2. exploratory data analysis
	- \blacktriangleright feature engineering
	- \blacktriangleright feature selection
- 3. baseline model
	- \blacktriangleright full working pipeline
	- ▶ lower-bound on accuracy
- 4. validation strategy
- 5. machine learning model(s)
- 6. ensembling

Pragmatic ref.: [coursera.org/learn/competitive-data-science](https://www.coursera.org/learn/competitive-data-science)

Outline: 4. Minimal area string vertices

[Introduction](#page-6-0)

[String field theory](#page-16-0)

[Machine learning](#page-43-0)

[Minimal area string vertices](#page-61-0)

[Machine learning for string field theory](#page-80-0)

[Conclusion](#page-98-0)

Minimal area vertex

- \triangleright vertex constructed from minimal area metric with bounds on length of shortest closed geodesic (systole) and heights of internal foliation [\[Zwiebach '90\]](https://dx.doi.org/10.1142/S0217732390003218)
- ▶ *n*-punctured sphere vertex: construct metric from Strebel quadratic differential [\[Saadi-Swiebach '89\]](https://dx.doi.org/10.1016/0003-4916(89)90126-7)
	- ▶ fixed up to moduli-dependent parameters
	- \blacktriangleright lead to contact interactions (internal foliation height = 0)

Minimal area vertex

- \triangleright vertex constructed from minimal area metric with bounds on length of shortest closed geodesic (systole) and heights of internal foliation [\[Zwiebach '90\]](https://dx.doi.org/10.1142/S0217732390003218)
- ▶ *n*-punctured sphere vertex: construct metric from Strebel quadratic differential [\[Saadi-Swiebach '89\]](https://dx.doi.org/10.1016/0003-4916(89)90126-7)
	- ▶ fixed up to moduli-dependent parameters
	- \blacktriangleright lead to contact interactions (internal foliation height = 0)
- ▶ goal: $\forall n \geq 3$ obtain $f_{n,i}$ and \mathcal{V}_n
- ▶ state-of-the-art:
	- **•** analytic solution for $n = 3$, numerical for $n = 4, 5$ [Moeller, [hep-th/0408067](http://arxiv.org/abs/hep-th/0408067), [hep-th/0609209](http://arxiv.org/abs/hep-th/0609209)]
	- \triangleright convex program for any genus and n, but not implemented and not restricted to vertex region [1806.00449[, Headrick-Zwiebach\]](http://arxiv.org/abs/1806.00449)

Quadratic differential

► quadratic differential $\varphi = \phi(z)dz^2$ [Strebel, '84]

$$
\phi(z) = \sum_{i=1}^{n} \left[\frac{-1}{(z - \xi_i)^2} + \frac{c_i}{z - \xi_i} \right]
$$

$$
0 = \sum_{i=1}^{n} c_i = \sum_{i=1}^{n} (-1 + c_i \xi_i) = \sum_{i=1}^{n} (-2\xi_i + c_i \xi_i^2)
$$

 \blacktriangleright $c_i(\xi_i, \bar{\xi}_i)$ accessory parameters (limit from Liouville accessory parameters)

▶ constraints: regularity at $z = \infty$

Quadratic differential

► quadratic differential $\varphi = \phi(z)dz^2$ [Strebel, '84]

$$
\phi(z) = \sum_{i=1}^{n} \left[\frac{-1}{(z - \xi_i)^2} + \frac{c_i}{z - \xi_i} \right]
$$

$$
0 = \sum_{i=1}^{n} c_i = \sum_{i=1}^{n} (-1 + c_i \xi_i) = \sum_{i=1}^{n} (-2\xi_i + c_i \xi_i^2)
$$

 \blacktriangleright $c_i(\xi_i, \bar{\xi}_i)$ accessory parameters (limit from Liouville accessory parameters)

- ▶ constraints: regularity at $z = \infty$
- $\triangleright \varphi$ induces metric with semi-infinite flat cylinders around punctures ($=$ external strings)

$$
ds^{2} = |\phi(z)|^{2}|dz|^{2}, \qquad ds^{2}|_{w_{i}} = \frac{|dw_{i}|^{2}}{|w_{i}|^{2}}
$$

Critical trajectory

Definitions:

- ▶ $\{z_i(c_i, \xi_i)\}\)$ zeros of $\phi(z)$
- \blacktriangleright horizontal trajectory $=$ path with $\varphi = \phi(z) {\rm d} z^2 > 0$

Critical trajectory

Definitions:

- ▶ $\{z_i(c_i, \xi_i)\}\)$ zeros of $\phi(z)$
- \blacktriangleright horizontal trajectory = path with $\varphi = \phi(z) {\rm d} z^2 > 0$
- \blacktriangleright critical trajectory $=$ horizontal trajectory with ends at $\phi(z) = 0$
- \triangleright critical graph = {critical trajectories}

Strebel quadratic differential

ξ = 0*.*87 − 0*.*62i

Strebel quadratic differential

- ▶ unique given *^ξ^λ*
- define minimal area metric
- ▶ defines string vertices
	- ▶ provide local coordinates
	- \blacktriangleright allow determining vertex region

 $\xi = 0.87 - 0.62i$

Computing the accessory parameter

- \blacktriangleright hard mathematical problem (related to Fuchsian uniformization, Liouville theory. . .)
- ▶ complex length between two points

$$
\ell(a,b) = \int_a^b dz \sqrt{\phi(z)}
$$

Computing the accessory parameter

- \blacktriangleright hard mathematical problem (related to Fuchsian uniformization, Liouville theory. . .)
- ▶ complex length between two points

$$
\ell(a,b) = \int_a^b dz \sqrt{\phi(z)}
$$

▶ Strebel differential: necessary and sufficient condition

$$
\forall (z_i, z_j): \quad \text{Im } \ell(z_i, z_j) = 0
$$
Computing the accessory parameter

- \blacktriangleright hard mathematical problem (related to Fuchsian uniformization, Liouville theory. . .)
- \triangleright complex length between two points

$$
\ell(a,b) = \int_a^b dz \sqrt{\phi(z)}
$$

▶ Strebel differential: necessary and sufficient condition

$$
\forall (z_i, z_j): \quad \text{Im } \ell(z_i, z_j) = 0
$$

- **•** for fixed ξ_i , give equations on c_i
- ▶ [Moeller, [hep-th/0408067](http://arxiv.org/abs/hep-th/0408067), [hep-th/0609209](http://arxiv.org/abs/hep-th/0609209)]: solve point by point using Newton method for $n = 4, 5$ (and fit for $n = 4$)

Local coordinates

▶ Strebel critical graph defines local coordinates \rightarrow map $|w_i| = 1$ to critical trajectory around ξ_i

Local coordinates

▶ Strebel critical graph defines local coordinates \rightarrow map $|w_i| = 1$ to critical trajectory around ξ_i

 \blacktriangleright series expansion

$$
z = f_{n,i}(w_i) = \xi_i + \rho_i w_i + \sum_{k \ge 2} d_{i,k-1}(\rho_i w_i)^k
$$

$$
\varphi \sim_{\xi_i} \left(-\frac{1}{(z - \xi_i)^2} + \sum_{k \ge -1} b_{i,k} (z - \xi_i)^k \right) dz^2 = -\frac{dw_i^2}{w_i^2}
$$

where $b_{i,k}=b_{i,k}(c_i,\xi_i)$, e.g. $b_{i,-1}=c_i$

 \blacktriangleright match coefficients

$$
d_{i,1} = \frac{b_{i,-1}}{2}
$$
, $d_{i,2} = \frac{1}{16}(7b_{i,-1}^2 + 4b_{i,0}),$...

Local coordinates

▶ Strebel critical graph defines local coordinates \rightarrow map $|w_i| = 1$ to critical trajectory around ξ_i

 \blacktriangleright series expansion

$$
z = f_{n,i}(w_i) = \xi_i + \rho_i w_i + \sum_{k \ge 2} d_{i,k-1}(\rho_i w_i)^k
$$

$$
\varphi \sim_{\xi_i} \left(-\frac{1}{(z - \xi_i)^2} + \sum_{k \ge -1} b_{i,k} (z - \xi_i)^k \right) dz^2 = -\frac{dw_i^2}{w_i^2}
$$

where $b_{i,k}=b_{i,k}(c_i,\xi_i)$, e.g. $b_{i,-1}=c_i$

 \blacktriangleright match coefficients

$$
d_{i,1} = \frac{b_{i,-1}}{2}
$$
, $d_{i,2} = \frac{1}{16}(7b_{i,-1}^2 + 4b_{i,0}),$...

▶ remaining unknown: mapping radii *ρ*ⁱ ∈ R

Mapping radii

 \triangleright mapping radius for ξ ⁱ (conformal invariant)

$$
\ln \rho_i = \ln \left| \frac{\mathrm{d}f_i}{\mathrm{d}w_i} \right|_{w_i=0} = \lim_{\epsilon \to 0} \left[\ln \int_{\xi_i + \epsilon}^{z_{\epsilon}} \mathrm{d}z \sqrt{\phi(z)} + \ln \epsilon \right]
$$

 \triangleright z_c is any point on critical graph (path after crossing closest trajectory does not contribute to imaginary part) \rightarrow compute $z_c = z_i \forall i$, then average

Vertex region

 $▶$ vertex region = lengths of non-contractible curves $\geq 2\pi$

Vertex region

- \triangleright vertex region = lengths of non-contractible curves $> 2\pi$
- ▶ determine shape (zeros on trajectory around each *ξ*i) and distances of critical graph
- riangle: $n = 4$

$$
\xi\in\mathcal{V}_4\quad\iff\quad\ell_1,\ell_2,\ell_3\geq\pi
$$

Vertex region

- $▶$ vertex region = lengths of non-contractible curves $> 2\pi$
- ▶ determine shape (zeros on trajectory around each *ξ*i) and distances of critical graph
- riangle: $n = 4$

$$
\xi\in\mathcal{V}_4\quad\iff\quad\ell_1,\ell_2,\ell_3\geq\pi
$$

▶ indicator function

$$
\int_{\mathcal{V}_n} \cdots = \int_{\mathcal{M}_n} \Theta(\xi) \cdots, \qquad \Theta(\xi) := \begin{cases} 1 & \text{if } \xi \in \mathcal{V}_n \\ 0 & \text{if } \xi \notin \mathcal{V}_n \end{cases}
$$

Outline: 5. Machine learning for string field theory

[Introduction](#page-6-0)

[String field theory](#page-16-0)

[Machine learning](#page-43-0)

[Minimal area string vertices](#page-61-0)

[Machine learning for string field theory](#page-80-0)

[Conclusion](#page-98-0)

Learning the accessory parameter

- \triangleright idea : $c_{\lambda}(\xi_{\lambda})$ = complex neural network $C_{\lambda}(\xi_{\lambda};$ **W***, b)*
- ▶ **W** weights (complex matrices), **b** biases (complex vectors)

Learning the accessory parameter

 \triangleright idea : $c_{\lambda}(\xi_{\lambda})$ = complex neural network $C_{\lambda}(\xi_{\lambda};$ *W*, *b*)

- ▶ *W* weights (complex matrices), *b* biases (complex vectors)
- \blacktriangleright unsupervised training with loss

$$
\mathcal{L}(\mathcal{C}_{\lambda},\xi_{\lambda})=\binom{2n-4}{2}^{-1}\sum_{i\geq j}\left(\text{Im }\ell(z_i,z_j)\right)^2\Big|_{c_{\lambda}=C_{\lambda}}
$$

 \rightarrow minimize with gradient descent

Example 1 for fixed ξ_{λ} , global minimum for any *n* with c_{λ} given by Strebel differential

Learning the accessory parameter

 \triangleright idea : $c_{\lambda}(\xi_{\lambda})$ = complex neural network $C_{\lambda}(\xi_{\lambda};$ *W*, *b*)

- ▶ *W* weights (complex matrices), *b* biases (complex vectors)
- \blacktriangleright unsupervised training with loss

$$
\mathcal{L}(\mathcal{C}_{\lambda},\xi_{\lambda})=\binom{2n-4}{2}^{-1}\sum_{i\geq j}\left(\text{Im }\ell(z_i,z_j)\right)^2\Big|_{c_{\lambda}=C_{\lambda}}
$$

 \rightarrow minimize with gradient descent

- **Example 1** for fixed ξ_{λ} , global minimum for any *n* with c_{λ} given by Strebel differential
- In training set: uniform sampling in \mathcal{M}_n minus disks around fixed punctures $(\xi_{n-2}, \xi_{n-1}, \xi_n) = (0, 1, \infty)$

Data

Neural network architecture

4-punctured sphere

ightharpoonup notations for $n = 4$

$$
\xi_1 := \xi \in \mathbb{C}, \qquad c_1 := a \in \mathbb{C}, \ell(z_1, z_2) := \ell_1, \qquad \ell(z_1, z_3) := \ell_2, \qquad \ell(z_1, z_4) := \ell_3
$$

▶ analytic solutions

$$
a(1/2) = 2, \qquad a\left(Q = \frac{1}{2} \pm i\frac{\sqrt{3}}{2}\right) = 2 + i\frac{2}{\sqrt{3}} \approx 2 + 1.1547i
$$

$$
a(\xi \in \mathbb{R}) = \begin{cases} 0 & \xi \le 0 \\ 4\xi & 0 \le \xi \le 1 \\ 4 & \xi \ge 1 \end{cases}
$$

Results: 4-punctured sphere (1)

```
\blacktriangleright neural network (Jax)
```
▶ fully connected, 3 layers (512*,* 128*,* 1028), CReLU activation

 $\mathbb{C}\text{ReLU}(z) := \text{ReLU}(\text{Re } z) + i \text{ReLU}(\text{Im } z)$

▶ training: 10⁵ points, Adam, *^ℓ*² regularization, weight decay, early stopping (\sim 1000 epochs)

Results: 4-punctured sphere (1)

```
\blacktriangleright neural network (Jax)
```
▶ fully connected, 3 layers (512*,* 128*,* 1028), CReLU activation

 $\mathbb{C}\text{ReLU}(z) := \text{ReLU}(\text{Re } z) + i \text{ReLU}(\text{Im } z)$

▶ training: 10⁵ points, Adam, *^ℓ*² regularization, weight decay, early stopping (\sim 1000 epochs)

▶ loss statistics (exact solution $\sim 10^{-12}$)

- ▶ mean: 8*.*9 · 10[−]⁸
- ▶ median: 3*.*8 · 10[−]⁸
- ▶ min: 1*.*3 · 10[−]¹¹
- ▶ max: 1*.*5 · 10[−]⁵

note: already good performance with 10^3 points, 100 epochs $(e.g. mean loss = 2.7 \cdot 10^{-5})$

▶ mean error compared to Moeller's fit: 5*.*5 · 10−³

Results: 4-punctured sphere (2)

Results: symmetries

complex conjugation and permutation of fixed punctures

$$
a(\xi^*) = a(\xi)^*
$$

\n
$$
a(1 - \xi) = 4 - a(\xi)
$$

\n
$$
a(\xi^{-1}) = \frac{a(\xi)}{\xi}
$$

Strebel differential

ξ = 0*.*87 − 0*.*62i

Learning the vertex region

- \blacktriangleright idea: $\Theta(\xi)$ = neural network $\theta(\xi)$
	- \blacktriangleright $\theta(\xi)$ becomes probability distribution
	- ▶ useful for Monte Carlo integration
	- ▶ easily find boundary, e.g. $\theta(\xi) \in [0.2, 0.8]$

Learning the vertex region

 \blacktriangleright idea: $\Theta(\xi)$ = neural network $\theta(\xi)$

 \blacktriangleright $\theta(\xi)$ becomes probability distribution

▶ useful for Monte Carlo integration

▶ easily find boundary, e.g. $\theta(\xi) \in [0.2, 0.8]$

▶ supervised classification, binary cross-entropy loss

$$
\mathcal{L}(\xi) = -\Theta(\xi) \ln \theta(\xi) - (1 - \Theta(\xi)) \ln (1 - \theta(\xi))
$$

 \blacktriangleright neural network (Jax)

▶ fully connected, 4 layers (512*,* 32*,* 8*,* 8), ELU activation

▶ training: 10⁵ points, Adam, *^ℓ*² regularization, weight decay, early stopping (∼ 800 epochs)

Results: vertex region

Accuracy: 99*.*34 % (train set), 99*.*27 % (validation set), 99*.*68 % (test set)

Tachyon potential

Truncated tachyon potential (ignore other fields)

$$
V(t) = -t^2 + \frac{v_3}{3!} t^3 - \frac{v_4}{4!} t^4 + \cdots
$$

$$
v_n := \mathcal{V}_n(T^n) = (-1)^n \frac{2}{\pi^{n-3}} \int_{\mathcal{V}_n} d^{n-3} \xi \prod_{i=1}^n \frac{1}{\rho_i^2}
$$

▶ mapping radii

$$
\rho_i := \left| \frac{\mathrm{d}f_i}{\mathrm{d}w_i}(0) \right|
$$

 \triangleright $v_3 = -3^9/2^{11} \approx -9.61$ [hep-th/9409015[, Belopolsky-Zwiebach\]](http://arxiv.org/abs/hep-th/9409015)

Tachyon potential

Truncated tachyon potential (ignore other fields)

$$
V(t) = -t^2 + \frac{v_3}{3!} t^3 - \frac{v_4}{4!} t^4 + \cdots
$$

$$
v_n := \mathcal{V}_n(T^n) = (-1)^n \frac{2}{\pi^{n-3}} \int_{\mathcal{V}_n} d^{n-3} \xi \prod_{i=1}^n \frac{1}{\rho_i^2}
$$

▶ mapping radii

$$
\rho_i := \left| \frac{\mathrm{d} f_i}{\mathrm{d} w_i}(0) \right|
$$

 \triangleright $v_3 = -3^9/2^{11} \approx -9.61$ [hep-th/9409015[, Belopolsky-Zwiebach\]](http://arxiv.org/abs/hep-th/9409015)

Results

- \triangleright ML statistics: train 10 neural networks, keep the ones (4) extrapolating well
- ▶ error in potential coefficient: $\sim 10^{-3}$ \rightarrow expect sufficiently precise for determining vacuum
- ▶ full pipeline: \sim 4 hours

Outline: 6. Conclusion

[Introduction](#page-6-0)

[String field theory](#page-16-0)

[Machine learning](#page-43-0)

[Minimal area string vertices](#page-61-0)

[Machine learning for string field theory](#page-80-0)

[Conclusion](#page-98-0)

Results and outlook

Results:

- \triangleright new method to construct *n*-point string vertices
- \triangleright implementation for $n = 4$ reproduces known results
- ▶ general method to compute functions extremizing some property

Results and outlook

Results:

- \triangleright new method to construct *n*-point string vertices
- \triangleright implementation for $n = 4$ reproduces known results
- ▶ general method to compute functions extremizing some property

Outlook:

- ▶ increase precision (note: difficult and non-standard ML problem!)
- ▶ generalize to $n \geq 5$
- ▶ compute closed string tachyon vacuum
- \triangleright compute quadratic differentials for Feynman regions
- \blacktriangleright generalize to hyperbolic vertices
- ▶ generalize higher-genus surfaces (loop corrections) (compute mass renormalization and vacuum shift)