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Talk highlights

▶ string field theory (SFT)
▶ 2nd quantized formulation of string theory
▶ amplitude = 2d conformal field theory (CFT) correlation

function integrated over moduli space of Riemann surfaces

▶ interactions = string vertices
▶ characterized by 1) local coordinates, 2) moduli subspace
▶ Feynman diagram sum = moduli space covering

▶ minimal area vertices (classical level)
▶ built from Strebel quadratic differential
▶ parametrized by accessory parameters (uniformization)
▶ compute mapping radii → local coordinates
▶ extract vertex region

▶ use neural networks to parametrize accessory parameters and
vertex region
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From worldsheet string theory to string field theory (1)

▶ usual formulation: worldsheet
▶ 1st-quantized (dynamics of a few strings)
▶ various problems (on-shell, divergences, perturbative. . . )

▶ 2nd quantization → string field theory (SFT)
▶ modern language and tools of field theory (renormalization. . . )
▶ constructive, symmetries manifest
▶ prove consistency (unitarity, analyticity, finiteness. . . )
▶ study backgrounds (independence, fluxes, D-instantons. . . )
▶ compute amplitudes and effective actions efficiently

▶ problems
▶ action: non-local, non-polynomial, ∞ number of fields
▶ general properties known, but not explicit form
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From worldsheet string theory to string field theory (2)
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Local coordinates and moduli space decomposition

fundamental vertex

graph with propagator
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Building string vertices with machine learning

Objective (physics)
Construct action using machine learning in order to extract
numbers from SFT (in particular, closed string tachyon vacuum).

Objective (math)
Construct functions on and subspaces of moduli space of Riemann
surfaces using machine learning.
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Tachyon vacuum
▶ main application: study closed string tachyon vacuum

(settle existence or not)
▶ method

▶ perform level-truncation (keep fields up to some mass)
▶ compute potential up to some order in gs
▶ integrate out other fields (except dilaton)
▶ extrapolate in level and order of interaction

▶ truncated tachyon potential

V (t) = −t2 +
∑
n≥3

vn
n! tn, v4 ≈ 72.32 ± 0.15

previous results: v4 ≈ 72.39
[hep-th/9412106, Belopolsky; hep-th/0408067, Moeller]

▶ other backgrounds: twisted tachyons on C/ZN . . .
[hep-th/0111004, Dabholkar; hep-th/0403051, Okawa-Zwiebach]
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String background

▶ 2d conformal field theory (CFT)
▶ conformally invariant non-linear sigma model of D

non-compact scalar fields Xµ

→ spacetime with metric Gµν and D non-compact dimensions
▶ a generic internal matter CFT with central charge cint
▶ (b, c) anti-commuting ghosts with central charge cgh = −26

from worldsheet reparametrizations
▶ string coupling gs

[hep-th/9411047, Bergman-Zwiebach]

Notes
▶ total central charge: D + cint + cgh = 0
▶ free scalar fields ⇒ flat spacetime

Gµν = ηµν = diag(±1, 1, . . . , 1︸ ︷︷ ︸
D−1

).
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String field theory action

▶ string field Ψ ∈ H (1st-quantized CFT Hilbert space)
▶ level-matching constraints

b−
0 |Ψ⟩ = L−

0 |Ψ⟩ = 0

L±
0 = L0 ± L̄0, b±

0 = b0 ± b̄0, c±
0 = (c0 ± c̄0)/2

▶ quantum BV master action (prime: omit g = 0, n = 1, 2, 3)

S = 1
2 ⟨Ψ, QBΨ⟩ +

∑′

g ,n≥0

ℏgg2g−2+n
s
n! Vg ,n(Ψn)

▶ ⟨·, ·⟩ := ⟨·|c−
0 |·⟩ (BPZ product)

▶ 1st-quantized BRST operator QB : H → H
▶ string vertices Vg ,n : H⊗n → C (“contact” interactions)
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Example: ϕ4 scalar field

S = 1
2

∫
ddk ϕ(−k)(k2 + m2)ϕ(k)

+ λ

4!

∫
ddk1 · · · ddk4 δ(d)(k1 + · · · + k4) ϕ(k1) · · · ϕ(k4)

=: 1
2 ⟨ϕ, Kϕ⟩ + λ

4! V4(ϕ4)

▶ 1st-quantized momentum state basis {|k⟩}

|ϕ⟩ =
∫

ddk ϕ(k) |k⟩ , ⟨k, k ′⟩ = δ(d)(k + k ′)

▶ Klein–Gordon operator K = (p2 + m2)
▶ quartic vertex

V4(ϕ4) =
∫

ddk1 · · · ddk4 V4(k1, . . . , k4) ϕ(k1) · · · ϕ(k4)

V4(k1, . . . , k4) = δ(d)(k1 + · · · + k4)
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Gauge fixing and Feynman rules
▶ Siegel gauge

b+
0 |Ψ⟩ = 0

▶ kinetic term
Sfree,gf = 1

2 ⟨Ψ|c−
0 c+

0 L+
0 |Ψ⟩

▶ propagator

⟨A1| b+
0

L+
0

b−
0 |A2⟩ =

▶ fundamental g-loop n-point vertex

Vg ,n(A1, . . . , An) =
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Momentum representation (1)

▶ string field Fourier expansion

|Ψ⟩ =
∑
A

∫ dDk
(2π)D ϕA(k) |A, k⟩

k: D-dimensional momentum
A: discrete labels (Lorentz indices, group repr., KK modes. . . )

▶ 1PI action

S = 1
2

∫
dDk ϕA(k)KAB(k)ϕB(−k)

+
∑

n

∫
dDk1 · · · dDkn V (n)

A1,...,An
(k1, . . . , kn)ϕA1(k1) · · · ϕAn(kn)
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Momentum representation (2)

Propagator

KAB(k)−1 = −i MAB
k2 + m2

A
QA(k)

▶ MAB mixing matrix for states of equal mass
▶ QA polynomial in momentum
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Momentum representation (3)

Vertices

− iV (n)
A1,...,An

(k1, . . . , kn) = −i
∫

dt e
−g{Aa}

ij (t) ki ·kj −c
n∑

a=1
m2

a

× PA1,...,An

(
k1, . . . , kn; t

)

▶ t moduli parameters
▶ P{Aa} polynomial in {ki}
▶ c > 0 → damping in sum

over states
▶ gij positive definite

▶ no singularity for ki ∈ C
(finite)

▶ lim
k0→±i∞

V (n) = 0

▶ lim
k0→±∞

V (n) = ∞
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Green functions

Truncated Green function = sum of Feynman diagrams of the form

F(p1, . . . , pn) ∼
∫

dT
∏
s

dDℓs e−Grs(T ) ℓr ·ℓs−2Hra(T ) ℓr ·pa−Fab(T ) pa·pb

×
∏

i

1
k2

i + m2
i

P(pa, ℓr ; T )

T , moduli parameters, P, polynomial in (pa, ℓr )

▶ momenta:
▶ external {pa} ▶ internal {ki} ▶ loop {ℓs}

ki = linear combination of {pa, ℓs}
▶ Grs positive definite

▶ integrations over spatial loop momenta ℓr converge
▶ integrations over loop energies ℓ0

r diverge
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Momentum integration
Prescription = generalized Wick rotation [1604.01783, Pius-Sen]

1. define Green function for Euclidean internal/external momenta
2. analytic continuation of external energies + integration

contour s.t.
▶ keep poles on the same side
▶ keep ends at ±i∞

→ analyticity for pa ∈ R, p0
a in first quadrant Im p0

a > 0, Re p0
a ≥ 0

−→

19 / 63
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SFT in a nutshell

SFT = standard QFT s.t.:
▶ infinite number of fields (of all spins)
▶ infinite number of interactions
▶ non-local interactions ∝ e−#k2

▶ reproduce worldsheet amplitudes (if well-defined)

Consequences of non-locality:
▶ cannot use position representation
▶ cannot use assumptions from local QFT (micro-causality. . . )

Reviews: [1703.06410, de Lacroix-HE-Kashyap-Sen-Verma; 1905.06785,
Erler; 2301.01686, HE]
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Consistency properties

▶ background independence [hep-th/9311009, Sen-Zwiebach;
hep-th/9411047, Bergman-Zwiebach; 1711.08468, Sen]

▶ Cutkosky rules, unitarity [1604.01783, Pius-Sen; 1607.08244, Sen]

▶ spacetime and moduli space iϵ-prescriptions [1610.00443, Sen]

▶ primitive analyticity, crossing symmetry [1810.07197, de
Lacroix-HE-Sen]

▶ soft theorems [1702.03934, Sen, 1703.00024, Sen]

▶ locality? causality? CPT?

Note: also shows consistency of timelike Liouville theory
[1905.12689, Bautista-Dabholkar-HE]
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Off-shell tree-level string amplitudes

▶ n-point string amplitude with external states Ai ∈ H

A0,n(A1, . . . , An) =
∫

M0,n
dn−3ξ

〈
ghosts ×

∏
i

fn,i ◦ Ai(0)
〉

Σn

▶ ⟨· · ·⟩ CFT correlation function
▶ sum over topologically inequivalent spheres Σn with n

punctures at (ξ1, . . . , ξn)
▶ can fix 3 points (ξn−2, ξn−1, ξn) = (0, 1, ∞)
▶ ξλ ∈ M0,n ∼ Cn−3 (λ = 1, . . . , n − 3) moduli space

▶ ghosts: 1) measure over M0,n, 2) needed for BRST invariance
▶ fn,i(wi ; ξλ) local coordinates = conformal maps

fn,i(0; ξλ) := ξi , fn,i ◦ Ai(0) := |f ′
n,i(0)|2hi Ai

(
fn,i(0)

)
if Ai is primary with weight (hi , hi)

22 / 63



Off-shell tree-level string amplitudes

▶ n-point string amplitude with external states Ai ∈ H

A0,n(A1, . . . , An) =
∫

M0,n
dn−3ξ

〈
ghosts ×

∏
i

fn,i ◦ Ai(0)
〉

Σn

▶ ⟨· · ·⟩ CFT correlation function
▶ sum over topologically inequivalent spheres Σn with n

punctures at (ξ1, . . . , ξn)
▶ can fix 3 points (ξn−2, ξn−1, ξn) = (0, 1, ∞)
▶ ξλ ∈ M0,n ∼ Cn−3 (λ = 1, . . . , n − 3) moduli space
▶ ghosts: 1) measure over M0,n, 2) needed for BRST invariance

▶ fn,i(wi ; ξλ) local coordinates = conformal maps

fn,i(0; ξλ) := ξi , fn,i ◦ Ai(0) := |f ′
n,i(0)|2hi Ai

(
fn,i(0)

)
if Ai is primary with weight (hi , hi)

22 / 63



Off-shell tree-level string amplitudes

▶ n-point string amplitude with external states Ai ∈ H

A0,n(A1, . . . , An) =
∫

M0,n
dn−3ξ

〈
ghosts ×

∏
i

fn,i ◦ Ai(0)
〉

Σn

▶ ⟨· · ·⟩ CFT correlation function
▶ sum over topologically inequivalent spheres Σn with n

punctures at (ξ1, . . . , ξn)
▶ can fix 3 points (ξn−2, ξn−1, ξn) = (0, 1, ∞)
▶ ξλ ∈ M0,n ∼ Cn−3 (λ = 1, . . . , n − 3) moduli space
▶ ghosts: 1) measure over M0,n, 2) needed for BRST invariance
▶ fn,i(wi ; ξλ) local coordinates = conformal maps

fn,i(0; ξλ) := ξi , fn,i ◦ Ai(0) := |f ′
n,i(0)|2hi Ai

(
fn,i(0)

)
if Ai is primary with weight (hi , hi)

22 / 63



Local coordinates

Motivation: restore SL(2,C) invariance, broken by punctures
(transformation between patches)
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Amplitude and Feynman diagrams

= +

+ +

A4 = F (s)
4 + F (t)

4 + F (u)
4 + V4
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Classical string vertices

▶ string vertex

V0,n(A1, . . . , An) =
∫

V0,n
dn−3ξ

〈
ghosts ×

∏
i

fn,i ◦ Ai(0)
〉

Σn

▶ defined such that

A0,n(A1, . . . , An) = F0,n(A1, . . . , An) + V0,n(A1, . . . , An)

F0,n contributions from Feynman diagrams (Riemann
surfaces) containing:
▶ propagators (long tubes)
▶ surfaces in V0,n′ with n′ < n

▶ V0,n ⊂ M0,n : vertex region ⊂ moduli space
▶ constraints between all {fn,i} (“gluing compatibility”)
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Moduli space covering
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How to build vertices

▶ SL(2,C) vertices
▶ n = 3 sphere: simplest vertex
▶ n = 4 sphere: analytical V4 boundary, no explicit coordinates

[HE, in progress]
▶ n = 1 torus: analytical vertex boundary, no explicit coordinates

[1704.01210, Erler-Konopka-Sachs]

▶ hyperbolic vertices [1706.07366, Moosavian-Pius; 1909.00033,
Costello-Zwiebach; 2102.03936, Fırat]

▶ minimal area vertices: optimal representation [Zwiebach ’91;
hep-th/9206084, Zwiebach]

▶ note: superstring vertices can be obtained by dressing bosonic
vertices [hep-th/0409018, Berkovits-Okawa-Zwiebach; 1403.0940,
Erler-Konopka-Sachs]
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Machine learning

Definition (Samuel)
The field of study that gives computers the ability to learn without
being explicitly programmed.

▶ approximate function y = F (x) by some structure
(neural network, decision tree. . . ) ⇒ new data representation

▶ agreement measured by some metric (distance, constraint. . . )
▶ tune structure parameters to improve approximation
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Approaches to machine learning

Learning approaches (task: x −→ y)
▶ supervised: learn a map from a set or pairs (xtrain, ytrain), then

predict ydata from xdata

▶ unsupervised: give xdata and let the machine find structure
(i.e. appropriate ydata)

▶ reinforcement: give xdata, let the machine choose output ydata
following some rules, reward good and/or punish bad results,
iterate
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Applications
General idea = pattern recognition
▶ classification / clustering
▶ regression (prediction)
▶ transcription / translation
▶ structuring
▶ anomaly detection
▶ denoising
▶ synthesis and sampling
▶ density estimation
▶ symbolic regression

Applications in industry: computer vision, language processing,
medical diagnosis, fraud detection, recommendation system,
autonomous driving. . .
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Neural network

▶ neural network
= sequence of layers

implementing computations
▶ layer

▶ output = different data
representation

▶ transformation parametrized
by weights

▶ goal: find weights such that the
network reproduces the target
fonction y = F (x)

▶ comparison: objective function
▶ optimization by gradient descent
▶ general architecture defined by hyperparameters

(number of layers. . . )
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Why neural networks?

▶ generically outperform other machine learning approaches
▶ flexible inputs (complex numbers, graphs. . . )
▶ neural network = differentiable function

▶ solve for the full function, not points one by one
▶ better expressivity than fit
▶ may extrapolate outside training region
▶ classication task provides (probabilistic) measure

▶ transfer learning
▶ compact representation of the result, easily reused and shared
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Fully connected neural network

x (0)
i0 := xi0

x (1)
i1 = g (1)

(
W (1)

i1i0 x (0)
i0 + b(1)

i1

)
fi2(xi0) := x (2)

i2 = g (2)
(

W (2)
i2i1 x (1)

i1 + b(2)
i2

)
i0 = 1, 2, 3; i1 = 1, . . . , 4; i2 = 1, 2
K = 1; din = 3; dout = 2; N(1) = 4

▶ input x (0) := x ∈ Rdin

▶ K ≥ 1 hidden layers, n ∈ {1, . . . , K}
▶ layer n: N(n) neurons (units) x (n) ∈ RN(n)

▶ learnable weights W (n) ∈ RN(n)×N(n−1)

▶ learnable biases b(n) ∈ RN(n) (not displayed)
▶ fixed activation functions g (n) (element-wise)

▶ output x (K+1) := f (x) ∈ Rdout
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Training
Method:

1. fix architecture (number of layers, activation functions. . . )
2. learn weights W (n) from gradient descent

Gradient descent:
▶ loss function L: overall error to be decreased

L =
Ntrain∑
i=1

distance
(
y (train)

i , y (pred)
i

)
+ regularization

common choices: mean squared error, cross-entropy. . .
▶ optimizer and its parameters (learning rate, momentum. . . )
▶ ℓ1 and ℓ2 weight regularization (penalize high and redundant

weights)
▶ training protocol: early stopping, learning rate decay. . .
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Training cycle
▶ hyperparameter tuning

▶ adapt architecture and optimization for better results
▶ search methods: trial-and-error, grid, random, Bayesian,

genetic. . .

▶ main risk: overfitting (= cannot generalize to new data)

1. split data in training,
validation and test sets

2. train several models on the
training set

3. compare performances on
validation set

4. evaluate performance of the
best model on test set

▶ consider n models in parallel (bagging) to get statistics
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Neural network components (1)
▶ convolutional layer: move window over data, combining values

with a kernel (to be learned)
→ translation covariance, locality, weight sharing

▶ recurrent layer (LSTM, GRU): keep memory of past
information in a sequence
→ temporal processing
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Neural network components (2)
▶ pooling layer: coarse-graining

→ reduce internal data size, translation/rotation/scale
invariances

▶ dropout layer: deactivate neurons randomly with probability p
→ improve generalization, regularization

▶ batch normalization layer: normalize data, then scale and shift
(learnable parameters)
→ keep stable internal data, regularization

Images: d2l.ai
38 / 63
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ML workflow

“Naive” workflow
1. get raw data
2. write neural network with

many layers
3. feed raw data to neural network
4. get nice results (or give up)

xkcd.com/1838
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ML workflow

Real-world workflow
1. understand the problem
2. exploratory data analysis

▶ feature engineering
▶ feature selection

3. baseline model
▶ full working pipeline
▶ lower-bound on accuracy

4. validation strategy
5. machine learning model(s)
6. ensembling

Pragmatic ref.: coursera.org/learn/competitive-data-science
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Outline: 4. Minimal area string vertices

Introduction

String field theory

Machine learning

Minimal area string vertices

Machine learning for string field theory

Conclusion
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Minimal area vertex

▶ vertex constructed from minimal area metric with bounds on
length of shortest closed geodesic (systole) and heights of
internal foliation [Zwiebach ’90]

▶ n-punctured sphere vertex: construct metric from Strebel
quadratic differential [Saadi-Swiebach ’89]
▶ fixed up to moduli-dependent parameters
▶ lead to contact interactions (internal foliation height = 0)

▶ goal: ∀n ≥ 3 obtain fn,i and Vn

▶ state-of-the-art:
▶ analytic solution for n = 3, numerical for n = 4, 5 [Moeller,

hep-th/0408067, hep-th/0609209]
▶ convex program for any genus and n, but not implemented and

not restricted to vertex region [1806.00449, Headrick-Zwiebach]

41 / 63

https://dx.doi.org/10.1142/S0217732390003218
https://dx.doi.org/10.1016/0003-4916(89)90126-7
http://arxiv.org/abs/hep-th/0408067
http://arxiv.org/abs/hep-th/0609209
http://arxiv.org/abs/1806.00449


Minimal area vertex

▶ vertex constructed from minimal area metric with bounds on
length of shortest closed geodesic (systole) and heights of
internal foliation [Zwiebach ’90]

▶ n-punctured sphere vertex: construct metric from Strebel
quadratic differential [Saadi-Swiebach ’89]
▶ fixed up to moduli-dependent parameters
▶ lead to contact interactions (internal foliation height = 0)

▶ goal: ∀n ≥ 3 obtain fn,i and Vn

▶ state-of-the-art:
▶ analytic solution for n = 3, numerical for n = 4, 5 [Moeller,

hep-th/0408067, hep-th/0609209]
▶ convex program for any genus and n, but not implemented and

not restricted to vertex region [1806.00449, Headrick-Zwiebach]

41 / 63

https://dx.doi.org/10.1142/S0217732390003218
https://dx.doi.org/10.1016/0003-4916(89)90126-7
http://arxiv.org/abs/hep-th/0408067
http://arxiv.org/abs/hep-th/0609209
http://arxiv.org/abs/1806.00449


Quadratic differential
▶ quadratic differential φ = ϕ(z)dz2 [Strebel, ’84]

ϕ(z) =
n∑

i=1

[ −1
(z − ξi)2 + ci

z − ξi

]

0 =
n∑

i=1
ci =

n∑
i=1

(−1 + ciξi) =
n∑

i=1
(−2ξi + ciξ

2
i )

▶ ci(ξi , ξ̄i) accessory parameters
(limit from Liouville accessory parameters)

▶ constraints: regularity at z = ∞

▶ φ induces metric with semi-infinite flat cylinders around
punctures (= external strings)

ds2 = |ϕ(z)|2|dz |2, ds2|wi = |dwi |2

|wi |2
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Critical trajectory

Definitions:
▶ {zi(ci , ξi)} zeros of ϕ(z)
▶ horizontal trajectory = path with

φ = ϕ(z)dz2 > 0

▶ critical trajectory = horizontal
trajectory with ends at ϕ(z) = 0

▶ critical graph = {critical trajectories}
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Strebel quadratic differential

Strebel quadratic differential
Quadratic differential such that its critical graph is:

1. a polyhedron (measure zero): ▶ vertices = zeros
▶ edges = critical trajectories
▶ faces = punctures

2. connected (no propagator = long tube)

▶ unique given ξλ

▶ define minimal area metric
▶ defines string vertices

▶ provide local coordinates
▶ allow determining vertex region

ξ = 0.87 − 0.62i
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Computing the accessory parameter

▶ hard mathematical problem (related to Fuchsian
uniformization, Liouville theory. . . )

▶ complex length between two points

ℓ(a, b) =
∫ b

a
dz
√

ϕ(z)

▶ Strebel differential: necessary and sufficient condition

∀(zi , zj) : Im ℓ(zi , zj) = 0

▶ for fixed ξi , give equations on ci
▶ [Moeller, hep-th/0408067, hep-th/0609209]: solve point by point

using Newton method for n = 4, 5 (and fit for n = 4)

45 / 63
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Local coordinates
▶ Strebel critical graph defines local coordinates

→ map |wi | = 1 to critical trajectory around ξi

▶ series expansion

z = fn,i(wi) = ξi + ρiwi +
∑
k≥2

di ,k−1(ρiwi)k

φ ∼ξi

− 1
(z − ξi)2 +

∑
k≥−1

bi ,k(z − ξi)k

 dz2 = −dw2
i

w2
i

where bi ,k = bi ,k(ci , ξi), e.g. bi ,−1 = ci
▶ match coefficients

di ,1 = bi ,−1
2 , di ,2 = 1

16
(
7b2

i ,−1 + 4bi ,0
)
, . . .

▶ remaining unknown: mapping radii ρi ∈ R
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Mapping radii

▶ mapping radius for ξi (conformal invariant)

ln ρi = ln
∣∣∣∣ dfi
dwi

∣∣∣∣
wi =0

= lim
ϵ→0

[
Im
∫ zc

ξi +ϵ
dz
√

ϕ(z) + ln ϵ

]
▶ zc is any point on critical graph (path after crossing closest

trajectory does not contribute to imaginary part)
→ compute zc = zi ∀i , then average
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Vertex region

▶ vertex region = lengths of non-contractible curves ≥ 2π

▶ determine shape (zeros on trajectory around each ξi) and
distances of critical graph

▶ example: n = 4

ξ ∈ V4 ⇐⇒ ℓ1, ℓ2, ℓ3 ≥ π

▶ indicator function∫
Vn

· · · =
∫

Mn
Θ(ξ) · · · , Θ(ξ) :=

{
1 if ξ ∈ Vn

0 if ξ /∈ Vn
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Outline: 5. Machine learning for string field theory
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Learning the accessory parameter

▶ idea : cλ(ξλ) = complex neural network Cλ(ξλ; W , b)
▶ W weights (complex matrices), b biases (complex vectors)

▶ unsupervised training with loss

L(Cλ, ξλ) =
(

2n − 4
2

)−1∑
i≥j

(
Im ℓ(zi , zj)

)2∣∣∣
cλ=Cλ

→ minimize with gradient descent
▶ for fixed ξλ, global minimum for any n with cλ given by

Strebel differential
▶ training set: uniform sampling in Mn minus disks around

fixed punctures (ξn−2, ξn−1, ξn) = (0, 1, ∞)
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Data
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Neural network architecture
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4-punctured sphere

▶ notations for n = 4

ξ1 := ξ ∈ C, c1 := a ∈ C,

ℓ(z1, z2) := ℓ1, ℓ(z1, z3) := ℓ2, ℓ(z1, z4) := ℓ3

▶ analytic solutions

a(1/2) = 2, a
(

Q = 1
2 ± i

√
3

2

)
= 2 + i 2√

3
≈ 2 + 1.1547i

a(ξ ∈ R) =


0 ξ ≤ 0
4ξ 0 ≤ ξ ≤ 1
4 ξ ≥ 1
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Results: 4-punctured sphere (1)

▶ neural network (Jax)
▶ fully connected, 3 layers (512, 128, 1028), CReLU activation

CReLU(z) := ReLU(Re z) + i ReLU(Im z)

▶ training: 105 points, Adam, ℓ2 regularization, weight decay,
early stopping (∼ 1000 epochs)

▶ loss statistics (exact solution ∼ 10−12)
▶ mean: 8.9 · 10−8

▶ median: 3.8 · 10−8

▶ min: 1.3 · 10−11

▶ max: 1.5 · 10−5

note: already good performance with 103 points, 100 epochs
(e.g. mean loss = 2.7 · 10−5)

▶ mean error compared to Moeller’s fit: 5.5 · 10−3
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Results: 4-punctured sphere (2)
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55 / 63



Results: symmetries
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Strebel differential
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Learning the vertex region

▶ idea: Θ(ξ) = neural network θ(ξ)
▶ θ(ξ) becomes probability distribution
▶ useful for Monte Carlo integration
▶ easily find boundary, e.g. θ(ξ) ∈ [0.2, 0.8]

▶ supervised classification, binary cross-entropy loss

L(ξ) = −Θ(ξ) ln θ(ξ) −
(
1 − Θ(ξ)

)
ln
(
1 − θ(ξ)

)
▶ neural network (Jax)

▶ fully connected, 4 layers (512, 32, 8, 8), ELU activation
▶ training: 105 points, Adam, ℓ2 regularization, weight decay,

early stopping (∼ 800 epochs)
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Results: vertex region
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Accuracy: 99.34 % (train set), 99.27 % (validation set), 99.68 % (test
set)
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Tachyon potential

Truncated tachyon potential (ignore other fields)

V (t) = −t2 + v3
3! t3 − v4

4! t4 + · · ·

vn := Vn(T n) = (−1)n 2
πn−3

∫
Vn

dn−3ξ
n∏

i=1

1
ρ2

i

▶ mapping radii

ρi :=
∣∣∣∣ dfi
dwi

(0)
∣∣∣∣

▶ v3 = −39/211 ≈ −9.61
[hep-th/9409015, Belopolsky-Zwiebach]
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Results

method v4

[hep-th/9412106, Belopolsky] 72.39
[hep-th/0408067, Moeller] 72.390
[hep-th/0506077, Yang-Zwiebach] 72.414
trapezoid (mean) 72.320 ± 0.146
trapezoid (best) 72.396
Monte Carlo (best) 72.366 ± 0.096

▶ ML statistics: train 10 neural networks, keep the ones (4)
extrapolating well

▶ error in potential coefficient: ∼ 10−3

→ expect sufficiently precise for determining vacuum
▶ full pipeline: ∼ 4 hours
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Outline: 6. Conclusion
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Results and outlook

Results:
▶ new method to construct n-point string vertices
▶ implementation for n = 4 reproduces known results
▶ general method to compute functions extremizing

some property

Outlook:
▶ increase precision (note: difficult and non-standard ML problem!)
▶ generalize to n ≥ 5
▶ compute closed string tachyon vacuum
▶ compute quadratic differentials for Feynman regions
▶ generalize to hyperbolic vertices
▶ generalize higher-genus surfaces (loop corrections)

(compute mass renormalization and vacuum shift)
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