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Introduction to BMS group

1. We start with the simplest case, 1 + 1D, with the metric

ds2 = −dt2 + dx2.

2. Massless particles move on null curves, which means
that for their description a coordinate system with a
null coordinate is more suitable, we define retarded time
u = t − x.

3. The metric in (u, x) coordinate is,

ds2 = −du2 − 2dudx.
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Introduction to BMS group

Some of the geodesics on this diagram reach infinity. We
have three types of infinity.

1. Timelike infinity i+ is reached when t → ∞ while x is
kept constant.

2. Spacelike infinity i0 is reached when x → ±∞ while t is
kept constant.

3. Null infinity I + is reached when either u or v is kept
constant while t → ∞.

4. Notice the difference between future and past infinities.
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Introduction to BMS group
We can use the freedom of the choice of coordinates
(diffeomorphism) to represent the infinities at finite
coordinates. This is called Penrose diagram.

�+

�-

�0

I  +

I  _

u=
0

u<0

v>0 u>
0

v=0

v<0

u= - ∞

u= ∞
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Introduction to BMS group

1. Every massless particle that escapes to infinity will land
on a point on I +.

2. This means I + is a complete Cauchy surface and
therefore can be used to construct the phase space.

Asymptotic region

The region of spacetime where x → ∞, but the
retarded time u is finite.

3. Since in the asymptotic region the space is
approximately flat, the dynamic of the system will be
much simpler. In this region we can easily identify
dynamical degrees of freedom.
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Introduction to BMS group

1. Now generalizing to 4D is straightforward, the metric is

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin(θ)2dϕ2.

2. Massless particles move on a null curve, the retarded
time in 4D is defined as u = t − r. This also includes
gravitational waves.

3. In (u, r, θ, ϕ) coordinates the metric is,

ds2 = −du2 − 2dudr + r2dθ2 + r2 sin(θ)2dϕ2.
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Introduction to BMS group

1. So far we only considered flat spacetime. We can write
the set of metrics which in the asymptotic region are
almost flat.

2. Naturally we are only interested in the metrics that are
solutions of the Einstein equations in the asymptotic
region.

Gµν = 8πGTµν .

3. Since the gauge freedom in the general relativity is the
freedom in the choice of coordinates, to eliminate the
gauge redundancy we use the Bondi gauge,

grr = grθ = grϕ = 0.
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Introduction to BMS group
1. Then the set of asymptotically flat metrics looks like

(xA = (θ, ϕ)),

ds2 = − du2 − 2dudr + r2qABdxAdxB + 2m(u, x)
r du2

+ rCAB(u, x)dxAdxB + DBCABdudxA

CABCAB

16r2 dudr + (4NA(u, x)
3 − 1

8DA(CCBCCB))dudxA

r
+ ... .

2. The function m(u, xA) is called Bondi mass aspect and
includes the information about the mass multipoles of
the spacetime.

3. NA(u, xA) is the angular momentum aspect, we use it to
read the angular momentum of the spacetime.

4. CAB is the shear tensor and it is the main subject of this
talk.
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Introduction to BMS group

As an example, the Kerr metric corresponds to CAB = 0,
m(u, xA) = M and NA(u, xA) = J. Traditional expressions for
the energy and angular momentum are

M(u) =
∫

S2
f(x) m(u, x)√qdx2,

J(u) =
∫

S2
YANA(u, x)√qdx2,

where YA are the generators of Lorentz group. One can
check that in this case these formula give the correct answer!
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Angular momentum

1. The infinitesimal change of the metric under a
coordinate transformation is

δξgµν = ∇µξν + ∇νξµ.

2. There is a set of coordinate transformations (ξ) which
respect the Bondi gauge and asymptotic form of the
metric.

3. BMS (Bondi-Metzner-Sachs) transformations are
defined as such coordinate transformations.

4. The explicit form of the generators is
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Introduction to BMS group

1. Generators ξ of the BMS group are

ξu = f(x) + u
2D.Y,

ξA = YA,

ξr = − r
2D.Y + 1

2D2ξu.

2. f(x) is an arbitrary function on the sphere and it is
called a “supertranslation”, because it is an angle
dependent time translation. YA are the conformal
killing vectors on the sphere DAYB + DBYA = qABD.Y.

3. Under a supertranslation “shear tensor” CAB, changes
CAB − (2DADB − qAB∆)f.
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Introduction to BMS group

1. If f(x) = C then it is a time translation u → u + C.

2. If

f(x) =
1∑

m=−1
CmYm

1

then this is a spatial translation r⃗ → r⃗ + C⃗.
3. The modes Ym

l with l > 1 are the new type of allowed
translations (aka proper supertranslations).
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Introduction to BMS group

BMS group

The symmetry group of the asymptotically flat
spacetimes. BMS group is an infinite dimensional
group constructed from the Lorentz group and the
supertranslations.

[ξ(Y,f), ξ(Y′,f′)] = ξ([Y,Y′],f [Y]−f′ [Y′]),

f [Y] = YADAf − 1
2 fDAYA.

A crucial observation is that rotations and
supertranslations do not commute. This is normal and
expected for ordinary translations but not for
supertrasnaltions!
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Introduction to Asymptotic symmetry group

1. CAB(u, xA), NA(u, xA) and m(u, xA) carry all the
information, but they are not all independent:

∂um = − 1
8NABNAB + 1

4DADBNAB,

∂uNA =DAm + 1
16DA(NBCCBC) − 1

4NBCDACBC

+ 1
4DBDADCCBC − 1

4DBDBDCCAC

− 1
4DB(CBCNAC − NBCCAC),

where NAB = ∂uCAB is called Bondi news tensor.
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Boundary graviton

1. If there is no incoming radiation then generally the shear
tensor is not zero in the past, it always can be written as

CAB(−∞, x) = (−2DADB + qAB∆)C(x), (1)

C(x) is called “boundary graviton”.
C(x) doesn’t directly affect mass and angular
momentum, so from that point of view it is an arbitrary
field.

2. Under a supertranslation

C → C + f.
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Angular momentum problem

1. NA(u, x) is not supertranslation invariant because shear
tensor changes under a supertranslation. An easy way
of changing NA is by adding a an infinite wavelength
radiation.

2. This is a problem because considering two states only
differing by a supertranslation they have different
angular momentum while they are equivalent for the
observers performing finite time experiments.

3. This problem is not merely a formal problem, blackhole
mergers radiate energy and angular momentum. If not
treated correctly they also suffers from this problem.
This applies to other gravitational scattering problems
as well. Therefore the problem is how to separate long
wavelength effects from the interesting physical data in
an experiment.
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Solution

1. The solution is to use the electric part of the shear
tensor C(u, xA) defined below.

DADBCAB(u, xA) = D2(D2 + 2)C(u, xA).

Invariant charge

QY(u) =
∫

d2Θ
√

hYA[
NA(u, xA)

− 3m(u, xA)DAC(u, xA)
− DAm(u, xA)C(u, xA)

]
,
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Properties of the charge

1. One can check,

[QY, QY′ ] = Q[Y,Y′].

2. It is supertranslation invariant.
3. It is translation invariant as well! This is an intrinsic

charge.
4. It is not possible to have a supertranslation invariant

charge that transforms under a translation unless
covariance is broken. All the previous prescriptions in
the literature suffer from the covariance problem.

5. The expression for the charge is not unique, there are
other definitions that satisfy all the requirements.
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Angular momentum flux problem
1. The flux of angular momentum is the amount of

radiated angular between two points, in this case
between past and future,

∆QY = QY[u2] − QY[u1] = QY[∞] − QY[−∞].

The flux is important because in a physical experiment
this is what we measure.

2. In a scattering process the correct flux is O(G2).
3. The presented formula is supertranslation invariant and

gives the correct flux but there is an issue.
4. The first two modes (Y0

0 and Ym
1 ) of the electric shear

are completely arbitrary and even do not appear in the
metric or the shear tensor.

5. However they are absolutely essential for the covariance
of the formalism. Simply there is no way of consistently
eliminitaing those modes.
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Angular momentum flux problem

1. In a physical process the news tensor is O(G2), so the
mass aspect is O(G).

∂um = − 1
8GNABNAB + 1

4GDADBNAB.

The invariant angular momentum flux is then O(G3).
The energy flux is also O(G3).

2. In a scattering process the correct flux is O(G2), the
easiest way to see this is through Linear response theory,

χRR = −1
2(∂χConserv

∂j δjrad + ∂χConserv

∂E δErad) ∝ O(G2).

3. Therefore we have to search for an invariant term of
order O(G2) that gives the correct flux. This is also
related to the problem of fixing first two modes of the
electric shear.
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How to fix the l = 0, 1 modes.

1. The key to fix the first two modes of C =
∑ C(m,l)Ym

l ,
is the observation that they appear in the boost charge.

2. For the Lorentz group, the associated charge to
rotations is angular momentum while the associated
charge to the boosts is the position of center of mass.

3. As mentioned above we can not set C(0,0) = C(m,1) = 0
because it is simply impossible.

4. We fix these coefficients by making the boost charges
zero. This corresponds to placing the center of mass at
the origin. This makes sense because a shift in
coordinates changes the value of the angular
momentum.

Q(−∞)Yboost = 0.
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5. Since we are studying flux we must specify
C(u, xA)(m,l≤1) separately for u = −∞ and u = ∞. Two
natural choices are

a) Set C(∞, xA)(m,l≤1) = C(−∞, xA)(m,l≤1).
b) Solve Q(∞)Yboost = 0.
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Conclusions

1. We have constructed a representation that solves the
angular momentum problem in general relativity.

2. The charges are intrinsic because they are translation
invariant.

3. The first two modes of C(u, xA) are fixed by placing
center of mass at the origin.

4. To study the flux we also need to fix the first modes at
the future, two natural choices were introduced here.
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Thank You


