Exercise 2— Fermions

1. Spinor representation

• Consider 4×4 anti-sym. matrices $S^{\rho\sigma}$ defined as

$$
S^{\rho\sigma} = \frac{i}{2} \gamma^{\rho} \gamma^{\sigma}, \quad \rho \neq \sigma \tag{1}
$$

where γ^{ρ} matrices satisfy the Clifford algebra:

$$
\{\gamma^{\rho}, \gamma^{\sigma}\} = -2\eta^{\rho\sigma} I_{4\times 4} \tag{2}
$$

show that $S^{\rho\sigma}$ satisfy the Lorentz algebra. (Hint: first calculate $[S^{\mu\nu}, \gamma^{\rho}]$.)

• Introduce the finite rep.

$$
S(\Lambda) = \exp\left(\frac{i}{2}\omega_{\rho\sigma}S^{\rho\sigma}\right)
$$
 (3)

where $\omega_{\rho\sigma}$ are six real numbers as introduced in $D(\Lambda)$ before. Now construct $S(\Lambda)$ for rotations and for boosts using S_{ij} and S_{0i} (the same as you did with M_{ij} and M_{0i} before.) Hint: use the rep. :

$$
\gamma^0 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \quad \gamma^i = \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} \tag{4}
$$

were σ^i denotes Pauli matrices. We can write this representation more compactly by introducing $\sigma^{\mu} = (I, \vec{\sigma})$ and $\bar{\sigma}^{\mu} = (I, -\vec{\sigma})$ as

$$
\gamma^{\mu} \equiv \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix} \tag{5}
$$

This is an irreducible representation of the Clifford algebra called Weyl or chiral representation. For any invertible matrix V one can construct an equivalent representation of the Clifford algebra $V\gamma^{\mu}V^{-1}$.

• Show that

$$
S(\Lambda_{\rm rot}) = \begin{pmatrix} e^{i\vec{\phi}\cdot\vec{\sigma}/2} & 0\\ 0 & e^{i\vec{\phi}\cdot\vec{\sigma}/2} \end{pmatrix}
$$
 (6)

1 Due: Mehr 23rd

for rotation and

$$
S(\Lambda_{\text{boost}}) = \begin{pmatrix} e^{\vec{\chi} \cdot \vec{\sigma}/2} & 0\\ 0 & e^{-\vec{\chi} \cdot \vec{\sigma}/2} \end{pmatrix}
$$
 (7)

for boost.

- Show that $S(\Lambda_{\rm rot}) = -1$ for 2π -rotation along x^3 -axis.
- Show that $S(\Lambda_{\text{boost}})^{\dagger} S(\Lambda_{\text{boost}}) \neq 1$ (the boost rep. is non-unitary).
- Show that $S(\Lambda_{\text{boost}})^{\dagger} = \gamma^0 S(\Lambda_{\text{boost}})^{-1} \gamma^0$.

This shows that the spinor representation is non-unitary. In fact there are no finite dimensional unitary representation of the Lorentz group.

2. Dirac equation

• Show that the Dirac action

$$
S = \int d^4x \bar{\Psi}(x)(i\gamma^{\mu}\partial_{\mu} - m)\Psi(x)
$$
 (8)

is Lorentz inv. (scalar) and gives the Dirac eq. as the Euler-Lagrange eq.

$$
(i\gamma^{\mu}\partial_{\mu} - m)\Psi(x) = 0.
$$
\n(9)

• Show that the plane-wave ansatz

$$
\Psi(\vec{x}) = u(\vec{p})e^{-ipx}, \qquad \Psi(\vec{x}) = v(\vec{p})e^{+ipx} \tag{10}
$$

are positive and negative frequency solutions to the Dirac eq. iff:

$$
(\not p + m)u(\vec{p}) = 0, \qquad (-\not p + m)v(\vec{p}) = 0 \tag{11}
$$

For $\vec{p} = 0$ (which means $p = -m\gamma^0$) show that these equations can be solved as;

$$
u(\vec{0}) = \begin{pmatrix} a \\ b \\ a \\ b \end{pmatrix}, \qquad v(\vec{0}) = \begin{pmatrix} c \\ d \\ -c \\ -d \end{pmatrix}
$$
 (12)

2 Due: Mehr 23rd

So the two linearly independent solutions are:

$$
u^{(1)}(\vec{0}) = \sqrt{m} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad u^{(2)}(\vec{0}) = \sqrt{m} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}
$$
(13)

$$
v^{(1)}(\vec{0}) = \sqrt{m} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \qquad v^{(2)}(\vec{0}) = \sqrt{m} \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}
$$
(14)

• Use $\bar{\Psi} = \Psi^{\dagger} \gamma^0$ to show that

$$
\bar{u}^{(1)}(\vec{0}) = \sqrt{m}(1,0,1,0), \quad \bar{u}^{(2)}(\vec{0}) = \sqrt{m}(0,1,0,1)
$$
\n(15)

$$
\overline{v}^{(1)}(\vec{0}) = \sqrt{m}(0, -1, 0, 1), \quad \overline{v}^{(2)}(\vec{0}) = \sqrt{m}(1, 0, -1, 0)
$$
\n(16)

• Now construct the spin operator

$$
S_z = \frac{i}{4} \left[\gamma^1, \gamma^2 \right] = \frac{i}{2} \gamma^1 \gamma^2 = \frac{1}{2} \begin{pmatrix} \sigma_3 & 0\\ 0 & \sigma_3 \end{pmatrix}
$$
 (17)

and show that for $s = 1, 2$:

$$
S_z u^{(s)}(0) = \pm \frac{1}{2} u^{(s)}(0) , \qquad (18)
$$

$$
S_z v^{(s)}(0) = \mp \frac{1}{2} v^{(s)}(0) . \tag{19}
$$

• Use the boost generators \vec{K} (in spinor rep.) for going to arbitrary 3-momentum $\vec{p} = (0,0,p_z)$:

$$
u^{(s)}(\vec{p}) = \exp(i\eta K^3) u^{(s)}(0), \qquad v^{(s)}(\vec{p}) = \exp(i\eta K^3) v^{(s)}(0) \tag{20}
$$

Do the same for $\bar{u}^{(s)}(\vec{p})$ and $\bar{v}^{(s)}(\vec{p})$. What is the value of η (rapidity)? (Hint: use the boost matrix K^3 for acting on the 4-vector $(m, \vec{0})$. Answer: $\eta = \sinh^{-1}(\frac{p_z}{m})$ $\frac{p_z}{m}).$

3 Due: Mehr 23rd